Collision Cross Sections of Proteins and their Complexes: a ...

Report 1 Downloads 47 Views
Collision Cross Sections of Proteins and their Complexes: a Calibration Framework and Database for Gas-Phase Structural Biology

Matthew F. Bush,a Zoe Hall,a Kevin Giles,b John Hoyes,b Carol V. Robinson,a* Brandon T. Ruotoloc*

Supporting Information

a

b

Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom

Waters Corporation, Floats Road, Wythenshawe , Manchester, M23 9LZ, United Kingdom c

Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, United States

*Address communication to: [email protected], [email protected]

S1

Average Effective Densities The effective protein complex radius depends on the average He measured for all observed charge states (He) and the contribution of He to the impact parameters (‫ݎ‬ு௘ , approximated as 1 Å): ‫ݎ‬௘௙௙ ൌ ට

‫ۃ‬ஐಹ೐ ‫ۄ‬ గ

െ ‫ݎ‬ு௘

(1)

The effective protein complex volume is calculated using: ସ

ଷ ܸ௘௙௙ ൌ ߨ‫ݎ‬௘௙௙ ଷ

(2)

Finally, effective densities, Deff, are then determined using the molecular weight (MW) of the ion and Avogadro’s number (N0): ‫ܦ‬௘௙௙ ൌ

ெௐ



ேబ ௏೐೑೑

S2

(3)

Table S1. Sample Sources and Preparation Protocols Sample

Supplier

Item #

Protocol

Gly-Arg-Gly-Asp-Ser

Sigma

G4391

DN

Ser-Asp-Gly-Arg-Gly

Sigma

S3771

DN

additional peptides

Waters

186002337

DN

ubiquitin

Sigma

U6253

DN

cytochrome c

Fluka

30396

myoglobin

Sigma

M1882

DN

-lactoglobulin A

Sigma

L7880

Buffer 

transthyretin

Sigma

P1742

Buffer, BS 

avidin

Sigma

A9275

Buffer 

bovine serum albumin

Sigma

P7656

Buffer 

concanavalin A

Sigma

C2010

Buffer, BS 

serum amyloid P

CalBioChem

565190

Buffer, BS 

alcohol dehydrogenase

Sigma

A7011

Buffer, BS 

pyruvate kinase

Sigma

P9136

Buffer, BS twice 

glutamate dehydogenase

Sigma

G7882

Buffer, BS twice 

GroEL

Sigma

C7688

Refolded,1 Buffer, BS twice

DN Buffer

DN = Samples prepared in water/methanol/acetic acid (49/49/2) solutions. Buffer = Samples prepared in 200 mM aqueous ammonium acetate solutions, then stored in 10 – 20 L aliquots at –20 °C. Ions from buffered solutions are characterized using very gentle instrumental conditions, near the threshold for ion transmission. Ions characterized under these conditions will be referred to as “native like”. BS = On day of analysis, sample buffer exchanged using a Micro Bio-Spin 6 column (Bio-Rad, Hercules, CA) that has been equilibrated with 200 mM aqueous ammonium acetate.1

S3

Table S2. Collision Cross Section () for Denatured Ions m / Da Z GRGDS

490

SDGRG

490

Angiotensin fragment 1-7 RASG-1 Angiotensin II Bradykinin Angiotensin I Renin substate Enolase T35 Enolase T37

ubiquitin bovine erythrocytes

898 1 000 1 046 1 060 1 296 1 758 1 872 2 827

8k

cytochrome c equine heart

12 k

apo myoglobin equine heart

17 k

1 2 1 2 2 2 2 2 3 3 3 3 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 15 16 17 18 19 20 21 22 23 24 25 26

S4

He / nm2 1.32 1.39 1.30 1.42 2.26 2.25 2.45 2.37 3.28 3.80 3.80 4.65 16.7 17.3 18.0 18.9 19.8 25.2 26.0 26.7 27.4 28.0 28.7 29.2 35.2 36.0 36.8 37.5 38.2 38.7 39.2 39.6 40.0

N2 / nm2 2.06 2.56 2.04 2.59 3.34 3.31 3.35 3.44 4.74 5.22 5.19 19.1 19.9 20.9 22.0 23.4 24.8 26.0 30.8 32.0 33.3 34.5 36.0 36.7 37.9 40.6 41.8 43.1 44.4 45.7 47.0 48.2 49.2 50.1 50.9 -

Table S3. Collision Cross Sections () for Native-Like Ions n

m / Da

1

12 k

1

18 k

2

37 k

transthyretin human plasma

4

56 k

avidin egg white

4

64 k

serum albumin bovine

1

69 k

concanavalin A Canavalia ensiformis

4

103 k

serum amyloid P human serum

5

125 k

alcohol dehydogenase Saccharomyces cerevisiae

4

143 k

pyruvate kinase rabbit heart

4

237 k

serum amyloid P human serum

10

250 k

cytochrome c equine heart -lactoglobulin bovine milk

S5

z 6 7 7 8 9 11 12 13 14 15 16 15 16 17 18 14 15 16 17 19 20 21 22 23 22 23 24 25 26 23 24 25 26 30 31 32 33 34 35 31 32 33

He / nm2 12.4 12.8 16.6 16.9 17.8 28.5 29.0 29.6 34.1 34.0 33.8 36.4 36.4 36.4 36.4 40.9 41.0 40.6 40.4 55.5 55.5 54.8 54.5 70.3 69.7 69.3 68.6 68.3 69.4 69.4 68.3 67.2 103 103 103 102 102 100 104 105 106

N2 / nm2 14.9 15.9 19.5 20.3 32.3 33.1 34.3 38.4 38.5 38.8 41.5 41.5 41.6 44.9 44.9 44.7 44.9 60.6 60.8 60.9 60.5 76.3 76.0 74.6 73.1 72.8 74.2 74.5 74.4 75.0 111 111 110 110 110 111 112 112

glutamate dehydrogenase bovine liver

GroEL Escherichia coli

6

336 k

14

801 k

S6

34 35 37 38 39 40 41 42 43 65 66 67 68 69 70 71 72

105 107 128 128 128 128 128 128 209 209 207 207 206 207

111 134 134 134 134 135 218 220 220 219 219 218 219 -

Figure S1. Absolute collision cross sections are determined directly from the slope of drift time versus reciprocal drift-voltage plots. The intercepts with the drift time axis correspond to t0. Drift times for the observed charge states of denatured peptide (DN Peptides), denatured cytochrome c (DN Cyt c), native-like transthyretin tetramer (TTR), native-like concanavalin A tetramer (Conc A), and native-like glutamate denhydrogenase hexamer (Glu Dhn) ions were measured at 10 drift voltages ranging from 60–200 V in 2.0 Torr of nitrogen gas. R2 values for the best fit lines are > 0.9997 and the uncertainties for the slopes are < 0.6 %.

S7

Figure S2. Calibrating travelling-wave drift times using all denatured protein and native-like protein complex ions (A). Travelling-wave drift times were measured using 0.4 Torr N2, a wave velocity of 300 m/s, and wave heights (WH) of 8 V (red squares), 9 V (green triangles), or 10 V (blue circles). Expansion of data for denatured protein ions (B). Correlation coefficients in B are for the correlation between data for the denatured protein ions and the calibration plot obtained using only data for native-like protein complex ions

S8

References 1.

Hernandez, H.; Robinson, C. V. Nature Prot. 2007, 2, 715-726.

S9