Counting maximal independent sets in subcubic graphs.

Report 3 Downloads 119 Views
Counting maximal independent sets in subcubic graphs. Konstanty Junosza-Szaniawski, Michal Tuczy´ nski Warsaw University of Technology

SOFSEM 2012

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

What is known:

Complexity ∆=2 ∆=3

Independent sets polynomial

Maximal independent sets polynomial

∆=4 ∆=5

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

What is known:

Complexity ∆=2 ∆=3 ∆=4 ∆=5

Independent sets polynomial

Maximal independent sets polynomial

#P-complete Vadhan 1997 #P-complete Vadhan 1997

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

What is known:

Complexity ∆=2 ∆=3 ∆=4 ∆=5

Independent sets polynomial

Maximal independent sets polynomial

#P-complete Vadhan 1997 #P-complete Vadhan 1997

#P-complete Vadhan 1997

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

What is known:

Complexity ∆=2 ∆=3 ∆=4 ∆=5

Independent sets polynomial #P-complete Greenhill 2000 #P-complete Vadhan 1997 #P-complete Vadhan 1997

Maximal independent sets polynomial

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

#P-complete Vadhan 1997

Counting maximal independent sets in subcubic graphs.

What is known:

Complexity ∆=2 ∆=3 ∆=4 ∆=5

Independent sets polynomial #P-complete Greenhill 2000 #P-complete Vadhan 1997 #P-complete Vadhan 1997

Maximal independent sets polynomial

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

#P-complete Greenhill 2000 #P-complete Vadhan 1997

Counting maximal independent sets in subcubic graphs.

What is known:

Complexity ∆=2 ∆=3 ∆=4 ∆=5

Independent sets polynomial #P-complete Greenhill 2000 #P-complete Vadhan 1997 #P-complete Vadhan 1997

Maximal independent sets polynomial ???

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

#P-complete Greenhill 2000 #P-complete Vadhan 1997

Counting maximal independent sets in subcubic graphs.

What is known: Moon, Moser 1965 Number of MIS is at most 3n/3 = 1.44..n v A  A v  Av

v A  A v  Av

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

r r r

v A  A v  Av

Counting maximal independent sets in subcubic graphs.

What is known: Moon, Moser 1965 Number of MIS is at most 3n/3 = 1.44..n v A  A v  Av

v A  A v  Av

r r r

v A  A v  Av

Johnson, Yannakakis 1988 MIS can be generated with polynomial delay

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

What is known: Moon, Moser 1965 Number of MIS is at most 3n/3 = 1.44..n v A  A v  Av

v A  A v  Av

r r r

v A  A v  Av

Johnson, Yannakakis 1988 MIS can be generated with polynomial delay Gaspers, Kratsch, Liedloff 2008, 2012 Maximal independent sets can be counted in time O ∗ (1.3642n )

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

What is known: Moon, Moser 1965 Number of MIS is at most 3n/3 = 1.44..n v A  A v  Av

v A  A v  Av

r r r

v A  A v  Av

Johnson, Yannakakis 1988 MIS can be generated with polynomial delay Gaspers, Kratsch, Liedloff 2008, 2012 Maximal independent sets can be counted in time O ∗ (1.3642n ) Maximal independent sets in a subcubic graph can be counted in time O ∗ (1.3532n ) in polynomial space.

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

What is known

Bj¨orklund, Husfeldt 2006 Graph can be colored in time O ∗ ((1 + c)n ) and polynomial space, it there is an algorithm counting independent sets in time O ∗ (c n ) and polynomial space.

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

What is known

Bj¨orklund, Husfeldt 2006 Graph can be colored in time O ∗ ((1 + c)n ) and polynomial space, it there is an algorithm counting independent sets in time O ∗ (c n ) and polynomial space. Counting independent sets - not necessary maximal Dahll¨of, Jonsson, Wahlstr¨ om 2002

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

∆(G ) = 3 O ∗ (1.18..n )

arbitrary ∆(G ) O ∗ (1.25..n )

Counting maximal independent sets in subcubic graphs.

What is known

Bj¨orklund, Husfeldt 2006 Graph can be colored in time O ∗ ((1 + c)n ) and polynomial space, it there is an algorithm counting independent sets in time O ∗ (c n ) and polynomial space. Counting independent sets - not necessary maximal Dahll¨of, Jonsson, Wahlstr¨ om 2002 F¨ urer, Kasiviswanathan 2005

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

∆(G ) = 3 O ∗ (1.18..n ) O ∗ (1.15..n )

arbitrary ∆(G ) O ∗ (1.25..n ) O ∗ (1.24..n )

Counting maximal independent sets in subcubic graphs.

What is known

Bj¨orklund, Husfeldt 2006 Graph can be colored in time O ∗ ((1 + c)n ) and polynomial space, it there is an algorithm counting independent sets in time O ∗ (c n ) and polynomial space. Counting independent sets - not necessary maximal Dahll¨of, Jonsson, Wahlstr¨ om 2002 F¨ urer, Kasiviswanathan 2005 Wahlstr¨om 2008

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

∆(G ) = 3 O ∗ (1.18..n ) O ∗ (1.15..n ) O ∗ (1.15..n )

arbitrary ∆(G ) O ∗ (1.25..n ) O ∗ (1.24..n ) O ∗ (1.23..n )

Counting maximal independent sets in subcubic graphs.

Branching

  v P  P P v  P PPv x  v P PPv v  v v y  v PP @ Pv @ v z@ v P PPv

v ∈S

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Branching

  v P  P P v  P PPv x  v P PPv v  v v y  v PP @ Pv @ v z@ v P PPv

v ∈S

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Branching

  v P  P  P v PPPv x v  PP Pv v y  v v  v PP @ Pv @ v  z@ v PP Pv

v ∈S

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Branching

  v P  P P v  P PPv x  v P PPv v  v v y  v PP @ Pv @ v z@ v P PPv

v∈ / S, x ∈ S

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Branching

  v P  P  P v PPPv x v  PP Pv v y  v v  v PP @ Pv @ v z@ v P PPv

v∈ / S, x ∈ S

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Branching

  v P  P v  P PPPv x v  PP Pv v y  v v  v PP @ Pv @ v z@ v P PPv

v∈ / S, x ∈ S

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Branching

  v P  P P v  P PPv x  v P PPv v  v v y  v PP @ Pv @ v z@ v P PPv

v, x ∈ /S

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Branching

  v P  P P v  P PPv x  v P PPv v  v v y  v PP @ Pv @ v z@ v P PPv

v, x ∈ /S

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Reduction

u v v v @ @ @

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Reduction

u v v v

99K

v v @ @

@ @ @

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

@

Counting maximal independent sets in subcubic graphs.

Reduction

u v v v

99K

v v @ @

@ @ @

@

c1 (v ) := c1 (v ) · c0 (u) c0 (v ) := c0 (v ) · (c1 (u) + c0 (u)) c¯0 (v ) := c1 (u) Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Reduction X Y

c1 (w )

S w :w ∈S

Y

c0 (w )

w :w ∈S, / ¯ )∩S6=∅ N(w

Y

c¯0 (w )

¯ ]∩S=∅ w :N[w

For c1 = 1, c0 = 1, c¯0 = 0 the sum is equal to the number of MIS.

u v v v

99K

v v @ @

@ @ @

@

c1 (v ) := c1 (v ) · c0 (u) c0 (v ) := c0 (v ) · (c1 (u) + c0 (u)) c¯0 (v ) := c1 (u) Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

The algorithm

MISCount(G , c1 , c0 , c¯0 ) 1. Reduction(G , c1 , c0 , c¯0 ) 2. Choose a vertex v 3. Branch on the vertex v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

x v v vy v

v

@

v

z v @

v

  v PP   v PP   v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

  v PP   v PP   v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

  v PP   v PP   v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

  v PP   v PP   v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

  v x v PP y   v PP v v v @   v z@v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v v v

  v PP   v PP   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v v v

  v PP   v PP   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v v v

  v PP   v PP   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v v v

  v PP   v PP   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v v v

  x v v PP y   v PP v v v @   z@v v PP

v v v

  v PP   v PP   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v v v

v, x ∈ /S

  x v v PP y   v PP v v v @   z@v v PP

v v v

  v PP   v PP   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v v v

v, x ∈ /S

  x v v PP y   v PP v v v @   z@v v PP

v v v

  v PP   v PP   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v v v

v, x ∈ /S

  x v v PP y   v PP v v v @   z@v v PP

v v v

  v PP   v PP   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

v v v

v, x ∈ /S

  x v v PP y   v PP v v v @   z@v v PP

v v v

  v PP   v PP   v PP

T (n3 ) = T (n3 − 4) + T (n3 − 4) + T (n3 − 2)

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

v v v

v, x ∈ /S

  x v v PP y   v PP v v v @   z@v v PP

v v v

  v PP   v PP   v PP

T (n3 ) = T (n3 − 4) + T (n3 − 4) + T (n3 − 2) T (n3 ) = O ∗ (1.41..n3 )

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

v v v

v, x ∈ /S

  x v v PP y   v PP v v v @   z@v v PP

v v v

  v PP   v PP   v PP

T (n3 ) = T (n3 − 4) + T (n3 − 4) + T (n3 − 2) T (n3 ) = O ∗ (1.41..n3 ) 1 T (n) = O ∗ (1.41.. 4 ·n ) =

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S x v v vy v @

z v @

v v v

v∈ / S, x ∈ S

  v x v PP y   v PP v v v @   v z@v PP

v v v

v, x ∈ /S

  x v v PP y   v PP v v v @   z@v v PP

v v v

  v PP   v PP   v PP

T (n3 ) = T (n3 − 4) + T (n3 − 4) + T (n3 − 2) T (n3 ) = O ∗ (1.41..n3 ) 1 T (n) = O ∗ (1.41.. 4 ·n ) = O ∗ (1.09..n )

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

 x vw  v PP  v vy v v v  P @

@ z v

v

P   v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S  x vw  v PP v vy v v v  @

@ z v

v

PP   v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S  x vw  v PP v vy v v v  @

@ z v

v

PP   v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S  x vw  v PP v vy v v v  @

@ z v

v

PP   v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S   x vw  v x vw v  PP PP  v vy v v v  v vy v v v   P P @

@ z v

v

P   v PP

@

z@v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v

P   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S v∈ / S, x ∈ S   x vw  v x vw v  PP PP  v vy v v v  v vy v v v   P P @

@ z v

v

P   v PP

@

z@v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v

P   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S v∈ / S, x ∈ S   x vw  v x vw v  PP PP  v vy v v v  v vy v v v   P P @

@ z v

v

P   v PP

@

z@v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v

P   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S v∈ / S, x ∈ S   x vw  v x vw v  PP PP  v vy v v v  v vy v v v   P P @

@ z v

v

P   v PP

@

z@v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v

P   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S v∈ / S, x ∈ S    x vw  v x vw v  x vw  v PP PP PP  v vy v v v  v vy v v v  v vy v v v    P P P @

@ z v

v

P   v PP

@

z@v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v

P   v PP

@

z@v

v

P   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S v∈ / S, x ∈ S v, x ∈ /S    w x vw  v x  x vw  v v v PP PP PP  v vy v v v  v vy v v v  v vy v v v    P P P @

@ z v

v

P   v PP

@

z@v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v

P   v PP

@

z@v

v

P   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S v∈ / S, x ∈ S v, x ∈ /S    w x vw  v x  x vw  v v v PP PP PP  v vy v v v  v vy v v v  v vy v v v    P P P @

@ z v

v

P   v PP

@

z@v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v

P   v PP

@

z@v

v

P   v PP

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S v∈ / S, x ∈ S v, x ∈ /S    w x vw  v x  x vw  v v v PP PP PP  v vy v v v  v vy v v v  v vy v v v    P P P @

@ z v

v

P   v PP

@

z@v

v

P   v PP

@

z@v

v

P   v PP

T (n3 ) = T (n3 − 4) + T (n3 − 6) + T (n3 − 2)

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S v∈ / S, x ∈ S v, x ∈ /S    w x vw  v x  x vw  v v v PP PP PP  v vy v v v  v vy v v v  v vy v v v    P P P @

@ z v

v

P   v PP

@

z@v

v

P   v PP

@

z@v

v

P   v PP

T (n3 ) = T (n3 − 4) + T (n3 − 6) + T (n3 − 2) T (n3 ) = O ∗ (1.36..n3 )

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S v∈ / S, x ∈ S v, x ∈ /S    w x vw  v x  x vw  v v v PP PP PP  v vy v v v  v vy v v v  v vy v v v    P P P @

@ z v

v

P   v PP

@

z@v

v

P   v PP

@

z@v

v

P   v PP

T (n3 ) = T (n3 − 4) + T (n3 − 6) + T (n3 − 2) T (n3 ) = O ∗ (1.36..n3 ) 1 T (n) = O ∗ (1.36.. 3.5 ·n ) =

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

v ∈S v∈ / S, x ∈ S v, x ∈ /S    w x vw  v x  x vw  v v v PP PP PP  v vy v v v  v vy v v v  v vy v v v    P P P @

@ z v

v

P   v PP

@

z@v

v

P   v PP

@

z@v

v

P   v PP

T (n3 ) = T (n3 − 4) + T (n3 − 6) + T (n3 − 2) T (n3 ) = O ∗ (1.36..n3 ) 1 T (n) = O ∗ (1.36.. 3.5 ·n ) = O ∗ (1.09..n )

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

 u  v P P

 x vw v  PP v vy  v P @

P  z  @ v PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

 u v  PP v ∈S  x vw v  PP v vy v  @

PP  z v @  PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

 u v  PP v ∈S  x vw v  PP v vy v  @

PP  z v @  PP

 u v  PP x ∈S  x vw v  PP v vy  v @

PP  z v @  PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

 u v  PP v ∈S  x vw v  PP v vy v  @

PP  z v @  PP

 u v  PP x ∈S  x vw v  PP v vy  v @

PP  z v @  PP

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

 u v  PP v, x ∈ /S  x vw v  PP v vy v  @

PP  z v @  PP

Counting maximal independent sets in subcubic graphs.

Complexity

 u v  PP v ∈S  x vw v  PP v vy v  @

PP  z v @  PP

 u v  PP x ∈S  x vw v  PP v vy  v @

PP  z v @  PP

 u v  PP v, x ∈ /S  x vw v  PP v vy v  @

PP  z v @  PP

T (n3 ) = T (n3 − 10) + T (n3 − 10) + T (n3 − 2)

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

 u v  PP v ∈S  x vw v  PP v vy v  @

PP  z v @  PP

 u v  PP x ∈S  x vw v  PP v vy  v @

PP  z v @  PP

 u v  PP v, x ∈ /S  x vw v  PP v vy v  @

PP  z v @  PP

T (n3 ) = T (n3 − 10) + T (n3 − 10) + T (n3 − 2) T (n3 ) = O ∗ (1.21..n3 )

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity

 u v  PP v ∈S  x vw v  PP v vy v  @

PP  z v @  PP

 u v  PP x ∈S  x vw v  PP v vy  v @

PP  z v @  PP

 u v  PP v, x ∈ /S  x vw v  PP v vy v  @

PP  z v @  PP

T (n3 ) = T (n3 − 10) + T (n3 − 10) + T (n3 − 2) T (n3 ) = O ∗ (1.21..n3 ) T (n) = O ∗ (1.21..n )

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Lemma on density

2m n

> 2.25

v @ @

v

 v  PP P

v

v

@v

v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Lemma on density

2m n

> 2.25

v @ @

v

 v  PP P

v

v

@v

v

v 2m n

>

16 7

v @

v @

@v

 v  PP P   v PP P v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Lemma on density v 2m n

>

7 3

v @

v @

@v

 v  PP P  v  PP P  v  PP P

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

v  v  PP Pv v @

v @ @v

 v  PP P v

Counting maximal independent sets in subcubic graphs.

Lemma on density v 2m n

2m n

>

>

7 3

28 11

v @

v @

@v

@

@v

v @

 v  PP P  v  PP P

 v  PP P  v  P  PP v  PP Pv v  v  PP Pv

v  v  PP Pv v @

v @ @v

 v  PP P v

v

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Lemma on density

2m n

>

8 3

 v P P



@ v P P



P   v P PP

v @ @

P

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Lemma on density

2m n

>

8 3

 v P P



@ v P P



P   v P PP

v @ @

P

  X v XX  Pv X XX   v v  PP @ P v @  XXX @v  PP   Pv X XX  v  PP

2m n

> 2.8

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

Counting maximal independent sets in subcubic graphs.

Complexity - Measure and Conquer

Let µ be a measure of a graph, let Gi for i = 1..t be graphs obtained in the i-th branch of recursive call of an algorithm A, let τ0 be the largest root of k X

x −(µ(G )−µ(Gi )) = 1

i=1 µ(G )

then the algorithm A runs in time O ∗ (τ0

Konstanty Junosza-Szaniawski, Michal Tuczy´ nski

).

Counting maximal independent sets in subcubic graphs.

Complexity - the measure  µ0 (n2 , n3 )      µ1 (n2 , n3 ) µ(n2 , n3 ) = µ2 (n2 , n3 )   ...    µ7 (n2 , n3 )

if if if

n = 0 lub 2m n =2 1 ≤ 2 2 < 2m n 4 1 2m 2 4 < n ≤ 2 72

if

2 14 17