Dr. Roxana E. Iacob

Report 14 Downloads 93 Views
www.hxms.neu.edu

Dr. Roxana E. Iacob

Department of Chemistry & Chemical Biology, Northeastern University

21 atoms

Primary structure characterization

> 20,000 atoms

Higher order structures, aggregates and interactions Higher order • • • • •

X Ray NMR Native-MS IM-MS HDX-MS

Aggregates

Interactions (mAb/Ag)

• • • • • •

• • • • • • •

Adapted from Beck A. et al. (2013). Anal. Chem. ; 85: 715-736

SEC (UV-MALS) AUC Native-MS IM-MS HDX-MS Crosslinking MS

SPR ELISA FACS Native-MS IM-MS HDX-MS Crosslinking MS

 Extremely important in biopharmaceutical industry/ $$$$$$  Identifying binding sites and epitopes between proteins and their binding partners are needed for the development of effective therapeutics  Patent matters

BINDING SITE

BINDING INTERFACE

EPITOPE ANTIGENIC DETERMINANT

Alanine scanning Linear epitopes No info on dynamics Time consuming

X-ray crystallography

Computational modeling Docking

Requires a crystal In silico/ model

NMR

Mass Spectrometry    

Limited proteolysis Non-covalent ESI Chemical crosslinking Oxidative labeling

 HDX MS Info on dynamics Size limited Large sample requirements

Fast measurements Low sample requirements Linear/ discontinuous epitopes Info on surface accessibility Info on dynamics

Pirrone G.F. et al. (2015). Anal. Chem. ; 87(1): 99-118

Research

Process Development

 Drug design

 Folding/ Refolding

 Structure-function

 Comparability and stability

 Epitope mapping  Effects of PTMs on conformation

 Impact of primary structure changes on conformation

 Lead compound optimization

 Formulation/ excipients

 HDX MS improves protein biophysical characterization Wales T.E. & Engen J.R. (2006): Mass Spectrom. Rev. 25 158. Engen (2009): Anal. Chem. 81 7870.

INACTIVE/unmodified/innovator

Deuterium Backbone amide H

ACTIVE/modified/biosimilar

cut into pieces with pepsin weigh with mass spectrometer

Solution conformation of proteins is analyzed under physiological conditions!

Oxygen

Backbone carbon

Hydrogen

Nitrogen

Sidechain carbon

Backbone amide hydrogen

Gln

Asp

His

Pro

Lys

Leu

• Solvent accessibility • Hydrogen bonding

• pH • Temperature • Side-chain effects • Isotope effects • Salt Englander W. (1983) Q. Rev. Biophys 16, 521. Engen J.R. et al. (2011) Ency. Anal. Chem.

Commercial or homemade pepsin beads

Robots, LEAP system

MSE Peptide id

DynamX

Houde D. et al. (2011). J. Pharm Sci. 100(6), 2071. Marcsisin S. & Engen J.R. (2010). Anal. Bioanal. Chem. 397(3), 967.

Xevo or Synapt

e.g.

NanoACQUITY w/ HDX tech.

D. i.

All measurements at 0 °C

POROS 20 m

125 psi

1.00

2.00

3.00

4.00

5.00

6.00

UPLC very efficient at low temperatures

ii.

3.5 m 21 °C

1250 psi

10 °C

1.00

iii.

3.00

5.00

7.00

9.00

11.00

5 °C

1.75 m

~1 °C

8000 psi 2.00

1.00

2.00

3.00

4.00 5.00 Time (min)

Wales et al. 2008. Anal. Chem. 80, 6815.

6.00

7.00

8.00

3.00

4.00 5.00 Time

6.00

Fab digested online with pepsin

7.00

mAb 150 kDa 8000 psi at 65 µL/min 12 min gradient 0 ˚C

Cycle time

20 min

12000 psi at 100 µL/min 12 min gradient 0 ˚C

10 min

12000 psi at 100 µL/min +/- IMS 6 min gradient 0 ˚C 1.00

3.00

5.00 7.00 Time (min)

Engen J.R. & Wales T.E. (2015). Annu. Rev. Anal. Chem. 8, Jul 22;8(1): 127

9.00

11.00

ACQUITY UPLC HSS T3 1.8 m 1.0 x 50 mm

1HZH

Porcine pepsin %

0

Full length IgG- 150kDa

100 100

Rice Porcine field eelpepsin pepsin Porcine pepsin

100

 Pepsin  Aspergillopepsin/ Factor XIII  Rice field eel pepsin

% %

% 0 0

0 100 100 100

Rice field eel pepsin Protease XIII Rice Porcine field eelpepsin pepsin

 Rhizopuspepsin (protease type XVIII)  Nepenthesin

% % % 0

0 1000

4.00

8.00

12.00

16.00

min

Protease XIII Rice field eel pepsin Protease XIII

100

%

%

Kadek A. et al. Anal. Chem. (2014); 6; 4287 Rey M. et al., Rapid Commun. Mass Spectrom. (2009); 23; 3431

0

Zhang H.M. et al. Anal. Chem. (2008); 80; 9034

4.00 100 4.00

Cravello L. et al. Rapid Commun. Mass Spectrom. (2003;) 17: 2387 Powers J.C. et al. Adv.Exp. Med. Biol. (1977); 95;141

0

8.00 8.00

12.00 12.00

16.00 16.00

min min

Ahn et al. BBA-Proteins and Proteomics, Protease (2013); 1834XIII (6): 1222

+ Deuterium

Decreased hydrogen exchange= binding interface?

Not always straightforward • Dissociation constant • Dynamic range • Compound solubility • Interface not always clear • Allostery

Engen J. R. (2003). Analyst, 128(6), 623 Konermann L. et al. (2011). Chem. Soc. Rev., 40, 1224

Protein 1

• •

Complex

Deuterium Labeling (15x D2O) time

Protein 2 Small molecule

Quenching (0 ºC, pH 2.4)

Online Pepsin Digestion

Software

NanoAcquity UPLC Separation

2.0 Peptide Identification by HDMSe+PLGS Deuterium Measurement by MS

DynamX

Data processing / DynamX

Waters UPLC w/ HDX

Synapt G2 Si

Deuterium Uptake Comparison Change/ Epitope peptide Relative Deuterium Level (Da)

15

15

Bou… Bound Free Free

12

12 9

6 3

12

9

9

6

6

3

3

0

0 0.1

1

10

100 1000 0.1 1

10

0

100 1000 0.1

Time (minutes) Ahn J. & Engen J. R. (2013). Chim. Oggi./ Chem. Today. 31, 25

15

No Change Bou… 7 Free 6 5 4 3 2 1 0 1

Bou… Bound Free Free

Bou nd Free

10 0.1

100 1 1000 10

100

Time (minutes)

1000

 EGFR binding to a monobody  Interleukin-23 binding to a monobody  Protein: small molecule interactions

Mechanism of EGFR activation

2011 sales > $1 billion

mAbs

Epidermal Growth Factor (EGF)

Extracellular

NEED: New biotherapeutics: cheaper, easier, faster, more effective!!!

Intracellular

Ferguson K.M. (2008). Annu Rev Biophys. 37, 353

 Derived from the 10th type III domain of human Fibronectin 1

2

3

4

5

6

7

8

9

10

11

12

13

14

IIICS

15

10Fn3

Type I Domain Type II Domain Type III Domain

Adnectin

 Structural similarities with VH of an antibody

VH

Adnectins FG

CDRH1 CDRH2

ADVANTAGES

BC DE

CDRH3

High Structural homology Low Sequence homology

Lipovsek D. (2011). Protein Engineering, Design& Selection. 24, 3

 Diversified CDR-like loops  Tailored to bind to multiple targets  KD: 0.7-2nM  High thermo-stability  Penetrate tissues faster  Easier to manufacture

Extracellular EGFR: 69 kDa

L E E K K V C Q G T S N K L T Q L G T F E D H F L S L Q R M F N N C E V V L G N L E I T Y V Q R N Y D L S F L K T I Q E V A G Y V L I A L N T V E R I P L E N L 10 20 30 40 50 60 70 80

Q I I R G NM Y Y E N S Y A L A V L S N Y D A N K T G L K E L P M R N L Q E I L H G A V R F S N N P A L C N V E S I QW R D I V S S D F L S NM S MD F Q N H L 90 100 110 120 130 140 150 160

IV

C

50 Cysteine residues 10 potential N-linked glycosylation sites

II N

G S C Q K C D P S C P N G S C WG A G E E N C Q K L T K I I C A Q Q C S G R C R G K S P S D C C H N Q C A A G C T G P R E S D C L V C R K F R D E A T C K D T C 170 180 190 200 210 220 230 240 P P L M L Y N P T T Y QMD V N P E G K Y S F G A T C V K K C P R N Y V V T D H G S C V R A C G A D S Y E M E E D G V R K C K K C E G P C R K V C N G I G I G E 250 260 270 280 290 300 310 320

F K D S L S I N A T N I K H F K N C T S I S G D L H I L P V A F R G D S F T H T P P L D P Q E L D I L K T V K E I T G F L L I Q A W P E N R T D L H A F E N L E 330 340 350 360 370 380 390 400

I I R G R T K Q H G Q F S L A V V S L N I T S L G L R S L K E I S D G D V I I S G N K N L C Y A N T I NW K K L F G T S G Q K T K I I S N R G E N S C K A T G Q 410 420 430 440 450 460 470 480

I

III

V C H A L C S P E G C WG P E P R D C V S C R N V S R G R E C V D K C N L L E G E P R E F V E N S E C I Q C H P E C L P Q A MN I T C T G R G P D N C I Q C A H 490 500 510 520 530 540 550 560

PDB: 3QWQ

Y I D G P H C V K T C P A G V MG E N N T L V W K Y A D A G H V C H L C H P N C T Y G C T G P G L E G C P T N G P K H H H H H H 570 580 590 600 610 620

Total: 84.1% Coverage, 2.98 Redundancy

IV

C

II N

I

10 sec

III

10 min 0% 10

60 min

240 min

20 30 40 50 >60% undetermined Relative % Deuterium

Iacob R.E. et al. (2014). JASMS, 25(12), 2093

Adnectin: 12 kDa

G V S D V P R D L E V V A A T P T S L L I S W D S G R G S Y Q Y Y R I T Y G E T G G N S P V Q E F T V P G P V H T A T I S G L K P 10 20 30 40 50 60

G V D Y T I T V Y A V T D H K P H A D G P H T Y H E S P I S I N Y R T E I D K P S Q H H H H H H 70 80 90 100 110

Total: 90.3% Coverage, 1.56 Redundancy

FG N

BC DE

C

10 min

10 sec

0% 10

60 min

240 min

20 30 40 50 >60% undetermined

Relative % Deuterium Iacob R.E. et al. (2014). JASMS, 25(12), 2093

78 EGFR peptic peptides 82% Sequence coverage

EGFR

8

96-108 96-118 99-117 99-118 99-120 99-132

45-54 46-54

0 1-14 1-17 1-19 15-24 18-24

Difference (Da) [EGFR-(EGFR+ Adnectin)]

16

10 sec 10 min 60 min 240 min

-8

EGFR + Adnectin -16

Relative Uptake (Da)

18 16

1

10

20

EGFR+Adnectin EGFR

1 - 19

14

8 7

EGFR+Adnectin EGFR

46 - 54

6

12

4

8

3

6

4

2

2

1 1

10

100 300

0

12

96 - 108

10

50 EGFR+Adnectin EGFR

1

10

100 300

16 14

6

8

4

6

0

226 - 244

78

EGFR+Adnectin EGFR

10

4

2 0.08

60

12

8

5

10

0 0.08

30 40 Peptide position (N-to-C)

2 0.08

Exposure Time (min)

1

10

100 300

0

0.08

1

10

100 300

Iacob R.E. et al. (2014). JASMS, 25(12), 2093

IV

Decrease > 1Da

1-24

Decrease 0.5-1Da

II

I III

96-108 PDB: 3QWQ

Adnectin

HDX MS

Y101 S99

X-ray crystal structure

L69 L14

EGFR Residues L17

Q16

Adnectin residues

T15

DE loop ~CDRH2

BC loop ~CDRH1

FG loop ~CDRH3

Iacob R.E. et al. (2014). JASMS, 25(12), 2093 Ramamurthy V. et al. (2012). Structure. 20: 259

HDX-MS

N 1-24

C

45-54 96-108

T15 Q16 L17

S99 L69

Y101

G18

N 15-18

X-ray structure

C

69 99 101

Iacob R.E. et al. (2014). JASMS, 25(12), 2093

IL-23: Key participant in central regulation of the cellular mechanism involved in inflammation Ustekinumab

IL-12 IL-12

Janssen Biotech.

Ustekinumab

IL-23

Are there other biotherapeutics capable to inhibit IL-23 pro-inflammatory effects? Mascelli M.M. et al. (2011). Nature Biotechnology 29, 615

FG

BC

DE

I W E L K K D V Y X X X L D W Y P D A P G E M X X X T C D T P E E D G I T W T L D Q S S E V L G S G K T L T I Q V K E X X X X G Q Y T C H K 10 20 30 40 50 60 70

IL-23: 59 kDa

G G E V L S H S L L L L H K K E D G I W S T D I L K D Q K E P K N K T F L R C E A K N Y S G R F T C WW L T T I S D L T F S V K S S R G S S 80 90 100 110 120 130 140

P40

D P Q G V T C G A A T L S A E R V R G D N K E Y E Y S V E X X X D S A C P A A E E S L P I E V M V D A V H K L K Y E N Y T S S F F I R D I I 150 160 170 180 190 200 210

K P D P P K N L Q L K P L K N S R Q V E V S W E Y P D T W S T P H S Y F S L T F C V Q V G K S K R E K K D R V F T D K T S A T V I C R K N A 220 230 240 250 260 270 280

P40

S I S V R A Q D R Y Y S S S W S E WA S V P C S G T E T S Q V A P A 290 300 310

15 Cysteine residues

P19

Total: 95.9% Coverage, 2.41 Redundancy

3 potential N-linked glycosylation sites

R A V P G G S S P A W T Q C X X X S Q K L C T L A W S A H P L V G H M D L R E E G D E E T T N D V P H I Q C G D G C D P Q G L R D N S Q F C 10 20 30 40 50 60 70

P19

L Q R I H Q G L I F Y E K L L G S D I F T G E P S L L P D S P V G Q L H A S L L G L S Q L L Q P E G H H W E T Q Q I P S L S P S Q P WQ R L 80 90 100 110 120 130 140

X X X X K I L R S L Q A F X X X X A R V F A H G A A T L S P H H H H H H 150 160 170

Total: 93.8% Coverage, 1.42 Redundancy

10 sec

10 min

0% 10

60 min

360 min

20 30 40 50 >60% undetermined Relative % Deuterium

Iacob R.E. et al. Expert Rev. Proteomics (2015); 12(2), 159

Adnectin: 12.3 kDa

FG

BC N DE

C

10 sec

10 min

0% 10

60 min

360 min

20 30 40 50 >60% undetermined Relative % Deuterium Iacob R.E. et al. Expert Rev. Proteomics (2015); 12(2), 159

Unbound 10

Bound 5

1-14

24-37

9

P19

3

6

6

4

2

2

1

0 0.1

1.0

10.0 100.0 1000

9

6 3 0 0.1

1.0

10.0 100.0 1000

3

0 0.1 20

89-105

1.0

10.0 100.0 1000

0 0.1 8

116-140

15

6

10

4

5

2

0 0.1

1.0

10.0 100.0 1000

1.0

10.0 100.0 1000

145-153

0 0.1

1.0

P40

10.0 100.0 1000

Exposure Time (min) Triplicate runs; Avg. data point variation: +/- 0.12 Da

P19

10s 1m 10m 1h 4h

N

1-14 18-23 24-37 38-69

Peptides

Relative uptake (Da)

18-23

4

8

12

P40 12

70-80

-25%

-6%

-2%

0%

81-88 89-105 110-115 116-140

Protection upon binding Relative % Deuterium

145-153

C

158-176

Iacob R.E. et al. Expert Rev. Proteomics (2015); 12(2), 159

Unbound

15

1-9

6

41-56

12

16

9

12

6

8

132-152

P19

4 2

3

0 0.1

16

1.0

4

0 10.0 100.0 1000 0.1

196-218

20

12

15

8

10

N

1.0

0 10.0 100.0 1000 0.1

263-286

9

5

0 0.1

0 0.1

4h

27-40 1.0

10.0 100.0 1000

41-56 55-59

285-294

81-90

6

3 4

10s 1m 10m 1h 1-9 13-23

Peptides

Relative uptake (Da)

8

P40

Bound

91-106 103-135 132-152 153-169 173-180

1.0

10.0 100.0 1000

1.0

0 10.0 100.0 1000 0.1

1.0

184-188

10.0 100.0 1000

196-218

Exposure Time (min) Triplicate runs; Avg. data point variation: +/- 0.12 Da

214-230 231-245 246-251

P40

263-286 285-294

C

298-314

-25%

P19

-6%

-2%

0%

Protection upon binding Relative % Deuterium Iacob R.E. et al. Expert Rev. Proteomics (2015); 12(2), 159

P40

HDX-MS

N

C

196-218

P19

P40

18-37

89-105

100 101

P40

C

263-266 285 294

204

26 35 37 29 31

148

X-ray structure

N 100 101

P19

143-153

In-silico mutagenesis

N

P19

263-286 285-294

26 29

204

C 266

294

148 Iacob R.E. et al. Expert Rev. Proteomics (2015); 12(2), 159

 EGFR binding to a monobody  Interleukin-23 binding to a monobody  Protein: small molecule interactions

28 approved inhibitors as of April 2015

Type I Active conformation

Type II Inactive conformation

Adapted from Clausen M.H. et al. Trends in Pharmacological Sciences (2015); 36 (7): 422

Type III Allosteric pocket Close to ATP pocket

Type IV Allosteric pocket Remote from ATP pocket

Imatinib Dasatinib

Sorafenib

Abl + Dasatinib

Allosteric inhibitors/ GNF5

Abl + GNF-5

Dasatinib Type I ATP pocket

GNF-5 Type IV Allosteric pocket

PDB: 2F4J

Change in HX relative to unbound form Significant

Subtle

No changes

Iacob R.E. et al. (2011). PLoS One, 6(1), e15929. Zhang J. et al. (2010). Nature, 463, 501.

S-andenosylmethionine (SAM) competitors In vivo efficacy

Yu W. et al. (2012). Nature Commun., 18(3), 1288

DOT1L

Protein

Protein+ drug 1min

10 sec

Drug 1

N

C

10s 1m 10m 1h

10s 1m 10m 1h

4h

10s 1m 10m 1h

60 min

4h

10s 1m 10m 1h 4h

#### 0.15 1.46 0.60 0.25

#### #### #### #### ####

#### #### 0.70 0.37 ####

#### 0.14 1.27 0.61 0.16

0.01 #### 0.08 0.05 0.07

0.20 0.16 0.00 0.04 0.08

0.03 0.06 #### #### ####

0.13 0.13 0.08 0.11 0.04

0.07 #### 0.10 0.07 0.07

0.25 0.10 0.02 0.08 0.05

0.11 0.02 0.04 #### 0.03

0.22 0.08 0.12 0.08 0.11

#### #### 0.65 0.41 ####

#### #### #### #### ####

#### #### 0.32 0.27 ####

#### #### 0.66 0.43 ####

0.45 #### 0.36 0.10 ####

0.37 #### #### #### 0.04

0.18 #### 0.08 #### ####

0.40 0.16 0.32 0.16 ####

#### 0.25 #### 0.04 ####

#### #### #### #### ####

#### #### #### 0.05 ####

#### 0.10 #### 0.15 ####

#### 0.08 0.09 #### 0.15

#### #### #### #### ####

#### #### 0.03 #### ####

#### 0.02 0.08 0.01 ####

0.15 0.10 1.04 1.12 0.86

0.05 0.15 #### #### ####

0.12 #### 0.91 0.99 0.63

0.08 0.35 1.22 1.20 0.69

0.15 #### 0.14 0.95 0.64

#### 0.12 #### #### ####

#### #### #### 0.40 0.37

#### 0.02 #### 0.61 0.56

0.25 0.48 1.01 1.61 1.47

0.11 0.37 #### #### ####

0.11 #### 0.61 1.33 1.11

0.00 0.47 1.16 1.82 1.54

0.14 0.17 0.41 0.51 0.79

#### #### 0.00 #### ####

0.01 #### 0.09 0.25 0.27

0.19 0.08 0.49 0.65 0.92

0.26 0.53 0.51 0.58 0.44

0.00 #### #### #### ####

0.00 #### 0.15 0.53 0.27

0.13 0.22 0.56 0.64 0.43

0.10

0.00 #### 0.09 ####

0.09 #### 0.04

#### #### #### ####

-1.0

Equation for subtraction DProtein+drug – DProtein

No data

4h

Drug 4

Drug 3

Drug 2 4h

10 min

-0.5

0.5

Exposure Drug 1 Drug 4

Drug 2 Drug 3

1.0

Difference in deuteration (Da) Protection in bound state

Protection

Exposure in bound state

 HDX MS is a valuable addition to the analytical characterization toolkit of the biopharmaceutical industry

 HDX MS offers peptide level resolution allowing for the accurate structural interrogation of every region in a biotherapeutic product

 Unambiguous identification of epitopes is critical for rational design of biotherapeutics

 HDX MS can pinpoint regions in a protein which become significantly protected upon binding, therefore supporting drug discovery efforts

 Small molecules binding to target proteins can be screened with HDX MS

NORTHEASTERN UNIVERSITY

COLLABORATORS

Engen Lab: Prof. John Engen Prof. Thomas Wales Dr. Jamie Moroco Greg Pirrone Rane Harrison Brent Kochert Christopher Wilson Kristian Teichert

HARVARD MEDICAL SCHOOL

Dr. Guodong Chen Dr. Wei Hui Dr. Adrienne A. Tymiak

Dr. Nathanael Gray Dr. James Bradner

Dr. Thomas Smithgall

RESEARCH SUPPORT NIGMS

R01- GM086507 R01- GM101135