Estimation of parameters of the Gompertz distribution using the least ...

Report 11 Downloads 85 Views
Applied Mathematics and Computation 158 (2004) 133–147 www.elsevier.com/locate/amc

Estimation of parameters of the Gompertz distribution using the least squares method Jong-Wuu Wu

a,*

, Wen-Liang Hung b, Chih-Hui Tsai

a

a

b

Department of Statistics, Tamkang University, Tamsui, Taipei 25137, Taiwan, ROC Department of Mathematics, National Hsinchu Teachers College, Hsin-Chu, Taiwan, ROC

Abstract The Gompertz distribution has been used to describe human mortality and establish actuarial tables. Recently, this distribution has been again studied by some authors. The maximum likelihood estimates for the parameters of the Gompertz distribution has been discussed by Garg et al. [J. R. Statist. Soc. C 19 (1970) 152]. The purpose of this paper is to propose unweighted and weighted least squares estimates for parameters of the Gompertz distribution under the complete data and the first failure-censored data (series systems; see [J. Statist. Comput. Simulat. 52 (1995) 337]). A simulation study is carried out to compare the proposed estimators and the maximum likelihood estimators. Results of the simulation studies show that the performance of the weighted least squares estimators is acceptable. Ó 2003 Elsevier Inc. All rights reserved. Keywords: Gompertz distribution; Least squares estimate; Maximum likelihood estimate; First failure-censored; Series system

1. Introduction The Gompertz distribution plays an important role in modeling human mortality and fitting actuarial tables. Historically, the Gompertz distribution

*

Corresponding author. E-mail address: [email protected] (J.-W. Wu).

0096-3003/$ - see front matter Ó 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2003.08.086

134

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

was first introduced by Gompertz [8]. Recently, many authors have contributed to the studies of statistical methodology and characterization of this distribution; for example, Read [15], Makany [13], Rao and Damaraju [14], Franses [6], Chen [3] and Wu and Lee [17]. Garg et al. [7] studied the properties of the Gompertz distribution and obtained the maximum likelihood (ML) estimates for the parameters. Gordon [9] provided the ML estimation for the mixture of two Gompertz distributions. Probability plots in their most common form are used with location-scale parameter models. Parameters were estimated from a probability plot by fitting a straight line through the points by eye, but it is clear that the line could have been determined by least squares method. A similar idea can be used more generally to propose parameter estimates in certain situations. In this paper, we consider Gompertz model in which the unknown parameters can be related to some transform of the cumulative distribution function under the complete data and the first failure-censored data (for example, series system; see [1]). The remainder of this paper is organized as follows. In Section 2, we propose unweighted and weighted least squares procedures for estimating the parameters of the Gompertz distribution for both complete samples and the first failure-censored samples. Numerical simulation studies are given in Section 3. Some conclusions are presented in Section 4.

2. Least squares estimation of parameters In this section, we propose both unweighted and weighted least squares procedures for estimating the parameters c and k of the Gompertz distribution. For the case of complete sample is discussed in Section 2.1. In Section 2.2, we derive the unweighted and weighted least squares estimates of c and k under the first failured-censored sampling plan [1]. The sampling plan proposed by Balasooriya [1] consists of grouping number of specimens into several sets or series systems of the same size and testing each of these series systems of specimens separately until the occurrence of first failure in each series system in reliability study. Compared to ordinary sampling plans, the first failured-censored sampling plan has an advantage of saving both test-time and resources. 2.1. Least squares estimates under complete data The probability density function (p.d.f.) of the Gompertz distribution is f ðxÞ ¼ kecx exp



 k  ðecx  1Þ ; c

x > 0;

ð1Þ

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

135

where c > 0 and k > 0 are the parameters. It is noted that when c ! 0, the Gompertz distribution will tend to an exponential distribution. The corresponding cumulative distribution function (c.d.f.) is   k F ðxÞ ¼ 1  exp  ðecx  1Þ ð2Þ c and F ðxÞ satisfies  lnf lnð1  F ðxÞÞg ¼ ln k þ ln

 ecx  1 : c

ð3Þ

Now suppose that X1 ; X2 ; . . . ; Xn is a sample of size n from a Gompertz distribution with parameters c and k, and that Xð1Þ < Xð2Þ <    < XðnÞ are the order statistics. For observed ordered observations xð1Þ < xð2Þ <    < xðnÞ , it follows from (3) that  cx  e ðiÞ  1 lnf lnð1  F ðxðiÞ ÞÞg ¼ ln k þ ln ; i ¼ 1; 2; . . . ; n: ð4Þ c Let the empirical distribution function of F ðxÞ be denoted by Fb ðxÞ, where b F ðxðiÞ Þ equals i=n. In order to avoid lnð0Þ in (4), we modify Fb ðxðiÞ Þ to be pi ¼

id n  2d þ 1

for some d ð0 6 d < 1Þ. The reader is referred to Barnett [2] and DÕAgostino and Stephens [4] for details. In this paper, we only choose three popular quantities d ¼ 0, 0.5, 0.3 [10,16], and let p1i ¼ i=ðn Pi þ 1Þ, p2i ¼ ði  0:5Þ=n, p3i ¼ ði  0:3Þ=ðn þ 0:4Þ. Alternatively, we use p4i ¼ j¼1 f1=ðn  j þ 1Þg to estimate  lnð1  F ðxðiÞ ÞÞ in (4) (see [12,16]). First, we estimate c and k by unweighted least squares (UWLS) method. Let  cx 2 n  X e ðiÞ  1 lnð  lnð1  pki ÞÞ  ln k  ln ; k ¼ 1; 2; 3 Gk ðc; kÞ ¼ c i¼1 and G4 ðc; kÞ ¼

n  X

 ln p4i  ln k  ln

i¼1

We solve the normal equations 8 oG ðc; kÞ > < k ¼ 0; oc > : oGk ðc; kÞ ¼ 0 ok

ecxðiÞ  1 c

2 :

136

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

for each k ¼ 1, 2, 3, 4. Then the corresponding UWLS estimates of c and k satisfy the following normal equations for k ¼ 1, 2, 3: ( !) ! n X ^ck xðiÞ e^ck xðiÞ þ e^ck xðiÞ  1 e^ck xðiÞ  1 ^ck ¼ ln ^ck e^ck xðiÞ  1 i¼1 ( !" n X ^ck xðiÞ e^ck xðiÞ þ e^ck xðiÞ  1 lnð  lnð1  pki ÞÞ  ^ck ðe^ck xðiÞ  1Þ i¼1 !#)1 n n 1X 1X e^ck xðiÞ  1  lnð  lnð1  pki ÞÞ þ ln ; ^ck n i¼1 n i¼1 ( k^k ¼

n Y ð  lnð1  pki ÞÞ

)1=n (

i¼1

n Y

e^ck xðiÞ  1 ^ck

i¼1

!)ð1=nÞ

and ( ^c4 ¼

n X

^c4 xðiÞ e^c4 xðiÞ þ e^c4 xðiÞ  1 e^c4 xðiÞ  1

i¼1

(

!

n X

^c4 xðiÞ e^c4 xðiÞ þ e^c4 xðiÞ  1  ^c4 ðe^c4 xðiÞ  1Þ i¼1 !#)1 n 1X e^c4 xðiÞ  1 þ ln ; ^c4 n i¼1 ( k^4 ¼

n Y

)1=n ( p4i

i¼1

n Y i¼1

e^c4 xðiÞ  1 ^c4

e^c4 xðiÞ  1 ^c4

ln !"

ln p4i 

!)

n 1X ln p4i n i¼1

!)ð1=nÞ :

Second, we can also estimate c and k via weighted least squares (WLS) method (see [5,11]). For a ¼ 1; 2 and k ¼ 1; 2; 3, let   cxðiÞ 2 n X e 1 Kak ðc; kÞ ¼ Waki lnð  lnð1  pki ÞÞ  ln k  ln c i¼1 and K34 ðc; kÞ ¼

n X

 W34i ln p4i  ln k  ln

i¼1

where W1ki ¼ fð1  pki Þ lnð1  pki Þg2 ;



ecxðiÞ  1 c

2 ;

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

( W2ki ¼ ( W34i ¼

3:3pki  27:5½1  ð1  pki Þ n i X j¼1

1 njþ1

0:025



137

)2 ;

)2 :

Solving the normal equations as before, the WLS estimates of c and k satisfy the following normal equations: ! ( !) n X ^cwak xðiÞ e^cwak xðiÞ þ e^cwak xðiÞ  1 e^cwak xðiÞ  1 ^cwak ¼ Waki ln ^cwak e^cwak xðiÞ  1 i¼1 8 2 ! > n <X ^cwak xðiÞ ^cwak xðiÞ ^cwak xðiÞ e þe 1 6  Waki 4 lnð  lnð1  pki ÞÞ ^cak xðiÞ > ^cak ðe  1Þ : i¼1  ^c x  391 Pn > e wak ðiÞ 1 = W lnð lnð1  p ÞÞ  W ln ki i¼1 aki i¼1 aki ^cwak 7 Pn ; 5 > ; i¼1 Waki

Pn 

k^wak

8  ^c x 9 P P > = < ni¼1 Waki lnð lnð1  pki ÞÞ  ni¼1 Waki ln e wak^c ðiÞ 1 > wak Pn ¼ exp > > ; : i¼1 Waki

for a ¼ 1, 2 and k ¼ 1, 2, 3 and ! ( n X ^cw34 xðiÞ e^cw34 xðiÞ þ e^cw34 xðiÞ  1 ^cw34 ¼ ln W34i e^cw34 xðiÞ  1 i¼1



8 > n <X > :

W34i

i¼1

2 6 4 ln p4i 

k^w34

^cw34 xðiÞ e^cw34 xðiÞ þ e^cw34 xðiÞ  1 ^cw34 ðe^cw34 xðiÞ  1Þ

e^cw34 xðiÞ  1 ^cw34

!)

!

 ^c x  391 Pn > e w34 ðiÞ 1 = W ln p  W ln 34i 4i 34i i¼1 i¼1 ^cw34 7 Pn ; 5 > ; i¼1 W34i

Pn

8  ^c x 9 P P > = < ni¼1 W34i ln p4i  ni¼1 W34i ln e w34^c ðiÞ 1 > w34 Pn : ¼ exp > > ; : i¼1 W34i

138

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

Garg et al. [7] derived the ML estimates of c and k from ( )1 )( n  n n  n   X X X X ^cxðiÞ ^cxðiÞ ^cxðiÞ ^c ¼  n e 1 xðiÞ e 1 n xðiÞ e ; i¼1

i¼1

i¼1

i¼1

ð5Þ ( k^ ¼

 ^c

n X i¼1

)( xðiÞ

n  n  X 1X e^cxðiÞ  1  xðiÞ e^cxðiÞ ^c i¼1 i¼1

)1 :

ð6Þ

Thus it is only necessary to obtain a solution of Eq. (5) which will be the MLE of c. An iterative solution to Eq. (5) can be achieved by NewtonÕs method; the initial estimate ^c0 may be selected as the LSE of c. The MLE k^ can then be obtained from Eq. (6). 2.2. Least squares estimates under the first failured-censored sampling plan The p.d.f. of the first-order statistic Xð1Þ is   k cx   cx f ðx; c; k Þ ¼ k e exp  ðe  1Þ ; c where k ¼ nk. The corresponding c.d.f. is   k F ðxÞ ¼ 1  exp  ðecx  1Þ : c

ð7Þ

ð8Þ

Suppose Xð1Þ1 ; Xð1Þ2 ; . . . ; Xð1Þm denote the set of first-order statistics of m samples of size n from (1) and let Yð1Þ < Yð2Þ <    < YðmÞ be the corresponding order statistics. Clearly, Xð1Þ1 ; Xð1Þ2 ; . . . ; Xð1Þm can also be considered as a random sample from (7). Then F ðxÞ in (8) satisfies  cx  e 1 lnf lnð1  F ðxÞÞg ¼ ln n þ ln k þ ln : ð9Þ c For observed ordered observations yð1Þ < yð2Þ <    < yðmÞ , (9) can be rewritten as  cy  e ðiÞ  1 lnf lnð1  F ðyðiÞ ÞÞg ¼ ln n þ ln k þ ln ; i ¼ 1; . . . ; m: ð10Þ c Proceeding as in Section 2.1, we can obtain the unweighted and weighted least squares estimates of c and k. Likewise, we can also obtain the ML estimates of c and k under the first failured-censored sampling plan.

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

139

3. Simulation study In this section, we compare the 12 estimation methods given in Section 2 in terms of the mean squared error over the 1000 simulated samples. The 12 methods are as follows: Method

Estimates

pi

Weight

1 2 3 4 5 6 7 8 9 10 11 12

UWLSE UWLSE UWLSE UWLSE WLSE WLSE WLSE WLSE WLSE WLSE WLSE MLE

p1i p2i p3i p4i p1i p2i p3i p1i p2i p3i p4i –

– – – – W11i W12i W13i W21i W22i W23i W34i –

Tables 1–6 list the results of complete data and the first failured-censored data, respectively. Based on the results shown in Tables 1–6, our proposed estimators and ML estimators are biased. For the complete data, by comparing SMSE of these estimates, we obtain the main conclusions are: (a) the performance of WLS estimates obtained by Method 11 in c ¼ 0:01, 0.1, 2.0, k ¼ 0:01 is better than ML estimates for n ¼ 10, 30; (b) for n ¼ 10, the WLS estimates obtained by Methods 6–7, Method 9 and Method 11 are more accurate than ML estimates in c ¼ 0:01, 0.1, 2.0, k ¼ 0:01; (c) for n ¼ 10, generally the UWLS and WLS estimates are better than ML estimates in c ¼ 0:01, k ¼ 0:01, 0.02; (d) for n ¼ 10, generally the UWLS and WLS estimates are better than ML estimates in c ¼ 0:1, k ¼ 0:02; and (e) for n ¼ 30, generally the UWLS and WLS estimates are better than ML estimates in c ¼ 0:01, k ¼ 0:02. From (a)– (e), it is suggested that Method 11 is useful for estimating c and k under the complete data. For the first failured-censored data, by comparing SMSE of these estimates, we obtain the main conclusions are: (a) for m ¼ n ¼ 10, the WLS estimates obtained by Method 6 and Method 9 are better than ML estimates in c ¼ 0:01, 0.1, 2.0, k ¼ 0:01; (b) for m ¼ n ¼ 10, generally the performance of UWLS and WLS estimates is better than ML estimates in c ¼ 0:01, 0.1, k ¼ 0:01; (c) for m ¼ n ¼ 10, except Methods 1–2 and Method 4, the UWLS and WLS estimates are more accurate than ML estimates in c ¼ 2:0, k ¼ 0:02; (d) for m ¼ 10, n ¼ 30, except Methods 1–3, the UWLS and WLS estimates are better

140

Table 1 The UWLS, WLS and ML estimates of c and k for n ¼ 10 c ¼ 0:01, ^c

k ¼ 0:01, k^

c ¼ 0:1, ^c

k ¼ 0:01, k^

c ¼ 2:0, ^c

k ¼ 0:01, k^

1 2 3 4 5 6 7 8 9 10 11 12

0.00849 0.01107 0.00975 0.00902 0.00860 0.01053 0.00962 0.00941 0.01028 0.00964 0.00970 0.01197

0.01076 (0.00001) 0.00993 (0.00001) 0.01038 (0.00001) 0.01107 (0.00001) 0.01072 (0.00001) 0.01014 (0.00001) 0.01046 (0.00001) 0.01081 (0.00001) 0.01030 (0.00001) 0.01033 (0.00008) 0.01103 (0.00001) 0.00868 (0.00005)

0.08342 0.09827 0.09143 0.08631 0.08820 0.09755 0.09371 0.09573 0.09825 0.09139 0.09591 0.10607

0.01451 (0.00008) 0.01171 (0.00005) 0.01295 (0.00006) 0.01446 (0.00008) 0.01306 (0.00005) 0.01148 (0.00003) 0.01211 (0.00003) 0.01210 (0.00004) 0.01135 (0.00003) 0.01294 (0.00006) 0.01218 (0.00003) 0.00963 (0.00003)

1.8175 2.0194 1.9260 1.8405 1.8410 1.9761 1.9106 1.8970 1.9836 1.9155 1.9473 1.9002

0.02028 (0.00046) 0.01437 (0.00031) 0.01651 (0.00034) 0.02010 (0.00047) 0.01743 (0.00021) 0.01348 (0.00011) 0.01511 (0.00012) 0.01710 (0.00022) 0.01338 (0.00011) 0.01698 (0.00034) 0.01524 (0.00015) 0.01693 (0.00041)

k ¼ 0:02, k^

c ¼ 0:1, ^c

k ¼ 0:02, k^

c ¼ 2:0, ^c

0.01975 (0.00012) 0.01910 (0.00011) 0.01961 (0.00012) 0.02049 (0.00014) 0.02029 (0.00014) 0.01972 (0.00013) 0.02000 (0.00013) 0.02085 (0.00015) 0.02013 (0.00013) 0.01964 (0.00012) 0.02157 (0.00017) 0.01982 (0.00025)

0.08140 0.20326 0.09599 0.08546 0.07862 0.10260 0.09024 0.08610 0.09918 0.09570 0.08812 0.11024

(0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00002) (0.00003)

c ¼ 0:01, ^c

(0.00617) (0.00863) (0.00746) (0.00663) (0.00668) (0.00827) (0.00760) (0.00811) (0.00830) (0.00745) (0.00781) (0.00969)

(0.5894) (0.9584) (0.8598) (0.7915) (0.6668) (0.8937) (0.7724) (0.5641) (0.5666) (0.6334) (0.8621) (0.9065)

k ¼ 0:02, k^

0.02861 (0.00035) 1.7890 (0.4987) 0.03670 0.01638 (0.00009) 1.9950 (0.5874) 0.02680 0.02576 (0.00033) 1.9107 (0.5566) 0.03036 0.03042 (0.00044) 1.8259 (0.4469) 0.03604 0.02900 (0.00035) 1.8330 (0.4258) 0.03198 0.02420 (0.00028) 1.9629 (0.3298) 0.02595 0.02683 (0.00032) 1.9259 (0.3776) 0.02758 0.02948 (0.00041) 1.9498 (0.3951) 0.02930 0.02586 (0.00032) 1.9870 (0.4009) 0.02496 0.02594 (0.00033) 1.9104 (0.3765) 0.03034 0.03129 (0.00049) 1.9225 (0.3912) 0.02873 0.02159 (0.00276) 1.8854 (0.3799) 0.02475 Note. The values in parentheses are sample mean squared error (SMSE) of ^c and k^ and Ô*Õ express SMSE less than Method 12. 1 2 3 4 5 6 7 8 9 10 11 12

0.00972 0.01242 0.01110 0.01039 0.00945 0.01189 0.01079 0.00992 0.01118 0.01107 0.00985 0.01338

(0.00005) (0.00007) (0.00006) (0.00005) (0.00004) (0.00006) (0.00005) (0.00005) (0.00005) (0.00006) (0.00004) (0.00006)

(0.00294) (0.03550) (0.00290) (0.00280) (0.00270) (0.00289) (0.00264) (0.00258) (0.00264) (0.00300) (0.00236) (0.00966)

(0.00162) (0.00080) (0.00108) (0.00157) (0.00087) (0.00055) (0.00062) (0.00078) (0.00046) (0.00107) (0.00064) (0.00035)

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

True value method

Table 2 The UWLS, WLS and ML estimates of c and k for n ¼ 30 c ¼ 0:01, ^c

k ¼ 0:01, k^

c ¼ 0:1, ^c

k ¼ 0:01, k^

c ¼ 2:0, ^c

k ¼ 0:01, k^

1 2 3 4 5 6 7 8 9 10 11 12

0.00837 0.10790 0.00962 0.00892 0.00837 0.01013 0.00938 0.00918 0.01006 0.00955 0.00933 0.01206

0.01087 (0.00001) 0.01012 (0.00001) 0.01053 (0.00001) 0.01120 (0.00001) 0.01089 (0.00001) 0.01037 (0.00001) 0.01060 (0.00001) 0.01093 (0.00001) 0.01049 (0.00001) 0.01058 (0.00001) 0.01123 (0.00001) 0.00863 (0.00002)

0.08422 0.09921 0.09234 0.08730 0.08836 0.09764 0.09386 0.09537 0.09808 0.09231 0.09570 0.10620

0.01440 (0.00008) 0.01164 (0.00005) 0.01288 (0.00006) 0.01436 (0.00008) 0.01314 (0.00004) 0.01156 (0.00003) 0.01218 (0.00003) 0.01228 (0.00004) 0.01148 (0.00003) 0.01287 (0.00006) 0.01235 (0.00003) 0.00883 (0.00003)

1.7930 2.0061 1.9088 1.8271 1.8211 1.9523 1.8902 1.8698 1.9715 1.9052 1.9345 1.9166

0.02093 (0.00051) 0.01422 (0.00022) 0.01697 (0.00032) 0.02048 (0.00049) 0.01784 (0.00021) 0.01448 (0.00014) 0.01568 (0.00016) 0.01778 (0.00024) 0.01365 (0.00011) 0.01694 (0.00027) 0.01508 (0.00013) 0.01493 (0.00035)

c ¼ 0:01, ^c

k ¼ 0:02, k^

c ¼ 0:1, ^c

k ¼ 0:02, k^

c ¼ 2:0, ^c

k ¼ 0:02, k^

0.01004 0.01298 0.01149 0.01082 0.00983 0.01207 0.01159 0.01033 0.01020 0.01039 0.01105 0.01401

0.01985 (0.00012) 0.01901 (0.00011) 0.01950 (0.00012) 0.02048 (0.00014) 0.02007 (0.00013) 0.01952 (0.00012) 0.01758 (0.00013) 0.01942 (0.00012) 0.02136 (0.00016) 0.02069 (0.00014) 0.01982 (0.00012) 0.02023 (0.00418)

0.08460 0.10156 0.09451 0.08836 0.08895 0.10002 0.09551 0.09485 0.10027 0.09449 0.09694 0.10987

0.02580 0.02186 0.02331 0.02588 0.02433 0.02192 0.02285 0.02334 0.02189 0.02330 0.02344 0.02008

1.7850 2.0088 1.9069 1.8219 1.8322 1.9821 1.9264 1.9321 1.9890 1.9066 1.9122 1.8954

0.03770 (0.00175) 0.02664 (0.00082) 0.03122 (0.00116) 0.03705 (0.00170) 0.03232 (0.00090) 0.02576 (0.00058) 0.02805 (0.00069) 0.02980 (0.00083) 0.02536 (0.00053) 0.03119 (0.00115) 0.02933 (0.00066) 0.02386 (0.00125)

1 2 3 4 5 6 7 8 9 10 11 12

(0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00002) (0.00002)

(0.00005) (0.00008) (0.00006) (0.00006) (0.00005) (0.00007) (0.00006) (0.00005) (0.00004) (0.00006) (0.00006) (0.00007)

(0.00630) (0.00879) (0.00760) (0.00677) (0.00669) (0.00827) (0.00760) (0.00803) (0.00826) (0.00760) (0.00778) (0.00971)

(0.00666) (0.00962) (0.00827) (0.00726) (0.00713) (0.00908) (0.00825) (0.00819) (0.00900) (0.00828) (0.00825) (0.01069)

(0.00039) (0.00027) (0.00030) (0.00040) (0.00032) (0.00025) (0.00027) (0.00027) (0.00024) (0.00030) (0.00027) (0.00020)

(0.8687) (0.9555) (0.8121) (0.7256) (0.6249) (0.9625) (0.7805) (0.5978) (0.9474) (0.7459) (0.7954) (0.9012)

(0.5608) (0.4571) (0.5418) (0.4855) (0.4288) (0.4132) (0.6287) (0.6386) (0.4291) (0.5945) (0.7068) (0.5122)

141

Note. The values in parentheses are sample mean squared error (SMSE) of ^c and k^ and Ô*Õ express SMSE less than Method 12.

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

True value method

142

Table 3 The UWLS, WLS and ML estimates of c and k for m ¼ 10, n ¼ 10 c ¼ 0:01, ^c

k ¼ 0:01, k^

c ¼ 0:1, ^c

k ¼ 0:01, k^

c ¼ 2:0, ^c

k ¼ 0:01, k^

1 2 3 4 5 6 7 8 9 10 11 12

0.04852 0.06270 0.05983 0.05601 0.04327 0.06003 0.04991 0.05072 0.05261 0.05995 0.05596 0.07250

0.00760 (0.00002) 0.00745 (0.00004) 0.00741 (0.00002) 0.00813 (0.00002) 0.00792 (0.00002) 0.00780 (0.00002) 0.00784 (0.00002) 0.00739 (0.00002) 0.00810 (0.00002) 0.00740 (0.00002) 0.00809 (0.00002) 0.00656 (0.00004)

0.10185 0.14774 0.12453 0.11167 0.09508 0.13019 0.11653 0.09787 0.12501 0.12446 0.10484 0.13765

0.01002 (0.00002) 0.00922 (0.00003) 0.00951 (0.00002) 0.01073 (0.00002) 0.01020 (0.00002) 0.00960 (0.00002) 0.00985 (0.00002) 0.01085 (0.00002) 0.00996 (0.00002) 0.00950 (0.00002) 0.01162 (0.00003) 0.00773 (0.00091)

1.6509 2.0926 1.8922 1.7396 1.5860 1.9579 1.8055 1.7376 1.9599 1.8899 1.8824 1.7767

0.01916 (0.00033) 0.01413 (0.00022) 0.01603 (0.00026) 0.01973 (0.00038) 0.01944 (0.00030) 0.01479 (0.00020) 0.01648 (0.00022) 0.01962 (0.00034) 0.01465 (0.00019) 0.01600 (0.00025) 0.01785 (0.00031) 0.01966 (0.00021)

c ¼ 0:01, ^c

k ¼ 0:02, k^

c ¼ 0:1, ^c

k ¼ 0:02, k^

c ¼ 2:0, ^c

0.09970 0.13263 0.11847 0.10560 0.10093 0.11640 0.10976 0.08593 0.10947 0.11648 0.10435 0.09857

0.01427 (0.00007) 0.01407 (0.00008) 0.01445 (0.00008) 0.01608 (0.00007) 0.01485 (0.00007) 0.01516 (0.00007) 0.01487 (0.00007) 0.01633 (0.00006) 0.01536 (0.00007) 0.01442 (0.00007) 0.01669 (0.00007) 0.02968 (0.00122)

0.14746 0.20322 0.17327 0.16110 0.13605 0.17993 0.16093 0.13608 0.17023 0.17707 0.15260 0.11024

1 2 3 4 5 6 7 8 9 10 11 12

(0.00330) (0.00583) (0.00494) (0.00426) (0.00293) (0.00543) (0.00392) (0.00433) (0.00430) (0.00496) (0.00425) (0.00745)

(0.01660) (0.03015) (0.02280) (0.01838) (0.01703) (0.02291) (0.02055) (0.01096) (0.02259) (0.02211) (0.02020) (0.01689)

(0.01523) (0.02963) (0.02174) (0.01791) (0.01307) (0.02247) (0.01847) (0.01288) (0.02118) (0.02177) (0.01581) (0.02303)

(0.01857) (0.03550) (0.02272) (0.01936) (0.01652) (0.02876) (0.02145) (0.01135) (0.02761) (0.02362) (0.02238) (0.00966)

(0.7125) (0.7657) (0.6788) (0.6707) (0.6396) (0.5300) (0.5330) (0.4510) (0.4629) (0.6609) (0.5654) (0.8457)

k ¼ 0:02, k^

0.01666 (0.00006) 1.6248 (0.5007) 0.06124 (0.00610) 0.01638 (0.00009) 2.1286 (0.9220) 0.02497 (0.00050) 0.01677 (0.00007) 1.8284 (0.4664) 0.04996 (0.00478) 0.01848 (0.00007) 1.7102 (0.4756) 0.06049 (0.00640) 0.01800 (0.00006) 1.6052 (0.4363) 0.05903 (0.00490) 0.01755 (0.00008) 1.9063 (0.2940) 0.03777 (0.00199) 0.01766 (0.00008) 1.7556 (0.3227) 0.04613 (0.00271) 0.01900 (0.00006) 1.9563 (0.3035) 0.03605 (0.00199) 0.01817 (0.00008) 1.8855 (0.5413) 0.03825 (0.00254) 0.01670 (0.00008) 1.8295 (0.4590) 0.04910 (0.00442) 0.01979 (0.00008) 1.7849 (0.3257) 0.05092 (0.00331) 0.02159 (0.00276) 1.7858 (0.4688) 0.05685 (0.00587) Note. The values in parentheses are sample mean squared error (SMSE) of ^c and k^ and Ô*Õ express SMSE less than Method 12.

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

True value method

Table 4 The UWLS, WLS and ML estimates of c and k for m ¼ 10, n ¼ 30 c ¼ 0:01, ^c

k ¼ 0:01, k^

c ¼ 0:1, ^c

k ¼ 0:01, k^

c ¼ 2:0, ^c

k ¼ 0:01, k^

1 2 3 4 5 6 7 8 9 10 11 12

0.12498 0.17748 0.15482 0.13444 0.14243 0.15687 0.16454 0.13730 0.16120 0.15756 0.13941 0.09990

0.02231 0.02165 0.02203 0.02410 0.02237 0.02278 0.02270 0.02375 0.02315 0.02174 0.02599 0.03139

0.21182 0.27975 0.24466 0.22383 0.19104 0.24524 0.22254 0.18841 0.23236 0.24456 0.20372 0.08483

0.02374 0.02297 0.02368 0.02523 0.02463 0.02457 0.02486 0.02726 0.02553 0.02361 0.02848 0.01801

1.6616 2.1641 1.9169 1.7149 1.5993 2.0068 1.7870 1.8376 2.0356 1.8744 1.5885 1.8946

0.04366 (0.00194) 0.03536 (0.00139) 0.03884 (0.00156) 0.04608 (0.00216) 0.04487 (0.00196) 0.03749 (0.00145) 0.04076 (0.00159) 0.04481 (0.00161) 0.03627 (0.00136) 0.03938 (0.00158) 0.04683 (0.00186) 0.04010 (0.00219)

1 2 3 4 5 6 7 8 9 10 11 12

(0.02916) (0.05726) (0.04213) (0.03400) (0.03706) (0.05748) (0.05346) (0.02728) (0.05008) (0.04412) (0.03891) (0.01699)

(0.00024) (0.00024) (0.00030) (0.00030) (0.00025) (0.00028) (0.00026) (0.00026) (0.00028) (0.00023) (0.00039) (0.00416)

(0.05235) (0.08744) (0.06722) (0.05646) (0.03676) (0.06484) (0.05444) (0.03863) (0.06028) (0.06775) (0.04678) (0.0100)

(0.00028) (0.00029) (0.00031) (0.00035) (0.00031) (0.00033) (0.00034) (0.00043) (0.00036) (0.00030) (0.00049) (0.00073)

(1.0561) (1.2438) (1.0140) (0.9252) (0.9509) (0.8751) (0.8540) (0.6266) (0.7844) (0.9017) (0.5526) (1.0089)

c ¼ 0:01, ^c

k ¼ 0:02, k^

c ¼ 0:1, ^c

k ¼ 0:02, k^

c ¼ 2:0, ^c

k ¼ 0:02, k^

0.31994 0.37894 0.33716 0.32309 0.30241 0.33629 0.33059 0.31525 0.33750 0.35060 0.28843 0.06127

0.04295 0.04328 0.04484 0.04814 0.04457 0.04691 0.04529 0.04942 0.04664 0.04452 0.05238 0.02826

0.33734 0.43907 0.38326 0.34234 0.33130 0.39209 0.34958 0.38639 0.37508 0.40520 0.33549 0.05173

0.04502 0.04501 0.04676 0.05016 0.04800 0.04904 0.04746 0.05118 0.05005 0.04571 0.05502 0.08380

1.7073 2.2012 2.0267 1.8608 1.5958 1.8068 1.8196 1.7541 1.7744 1.9727 1.8865 1.8422

0.07517 (0.00454) 0.06806 (0.00392) 0.06878 (0.00399) 0.07986 (0.00558) 0.07722 (0.00456) 0.08036 (0.00576) 0.07591 (0.00464) 0.08299 (0.00628) 0.07802 (0.00488) 0.06802 (0.00384) 0.07999 (0.00578) 0.01854 (0.00864)

(0.20926) (0.27150) (0.24223) (0.22103) (0.21794) (0.21621) (0.23176) (0.17606) (0.23450) (0.26211) (0.16646) (0.01155)

(0.00086) (0.00098) (0.00108) (0.00125) (0.00099) (0.00121) (0.00104) (0.00132) (0.00116) (0.00107) (0.00163) (0.00121)

(0.16769) (0.27645) (0.19587) (0.17261) (0.15508) (0.22100) (0.17269) (0.20854) (0.19942) (0.21520) (0.16274) (0.01058)

(0.00094) (0.00109) (0.00129) (0.00138) (0.00120) (0.00137) (0.00123) (0.00149) (0.00148) (0.00117) (0.00182) (0.58168)

(1.0609) (1.2478) (1.1409) (1.1185) (1.0209) (1.0586) (0.9108) (1.2386) (0.7914) (1.0945) (0.8574) (1.0958)

143

Note. The values in parentheses are sample mean squared error (SMSE) of ^c and k^ and Ô*Õ express SMSE less than Method 12.

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

True value method

144

Table 5 The UWLS, WLS and ML estimates of c and k for m ¼ 30, n ¼ 10 c ¼ 0:01, ^c

k ¼ 0:01, k^

c ¼ 0:1, ^c

k ¼ 0:01, k^

c ¼ 2:0, ^c

k ¼ 0:01, k^

1 2 3 4 5 6 7 8 9 10 11 12

0.02710 0.03325 0.03001 0.02889 0.02597 0.03141 0.02846 0.02731 0.02873 0.03025 0.02461 0.03002

0.00852 (0.00001) 0.01859 (0.00076) 0.00848 (0.00001) 0.00885 (0.00001) 0.00875 (0.00001) 0.00873 (0.00001) 0.00875 (0.00001) 0.00898 (0.00001) 0.00890 (0.00001) 0.00848 (0.00001) 0.00932 (0.00001) 0.00908 (0.00388)

0.08408 0.11010 0.09822 0.09119 0.08556 0.10360 0.09642 0.09506 0.10220 0.09815 0.09604 0.12221

0.01084 (0.00001) 0.00998 (0.00001) 0.01035 (0.00001) 0.01101 (0.00001) 0.01076 (0.00001) 0.01028 (0.00001) 0.01047 (0.00001) 0.01082 (0.00001) 0.01042 (0.00001) 0.01038 (0.00001) 0.01115 (0.00001) 0.00912 (0.00002)

1.7177 1.9839 1.8621 1.7667 1.7934 1.9514 1.8905 1.9157 1.9595 1.8617 1.9146 1.9024

0.01537 (0.00011) 0.01199 (0.00006) 0.01344 (0.00008) 0.01527 (0.00011) 0.01379 (0.00006) 0.01191 (0.00004) 0.01258 (0.00005) 0.01280 (0.00005) 0.01180 (0.00004) 0.01343 (0.00008) 0.01255 (0.00004) 0.01283 (0.00008)

k ¼ 0:02, k^

c ¼ 0:1, ^c

k ¼ 0:02, k^

c ¼ 2:0, ^c

k ¼ 0:02, k^

0.01985 (0.00012) 0.01901 (0.00011) 0.01950 (0.00012) 0.02048 (0.00014) 0.02007 (0.00013) 0.01952 (0.00012) 0.01758 (0.00013) 0.01942 (0.00012) 0.02136 (0.00016) 0.02069 (0.00014) 0.01982 (0.00012) 0.02023 (0.00418)

0.08460 0.10156 0.09451 0.08836 0.08895 0.10002 0.09551 0.09485 0.10027 0.09449 0.09694 0.10987

1.7850 2.0088 1.9069 1.8219 1.8322 1.9821 1.9264 1.9321 1.9890 1.9066 1.9122 1.8954

0.03770 (0.00175) 0.02664 (0.00082) 0.03122 (0.00116) 0.03705 (0.00170) 0.03232 (0.00090) 0.02576 (0.00058) 0.02805 (0.00069) 0.02980 (0.00083) 0.02536 (0.00053) 0.03119 (0.00115) 0.02933 (0.00066) 0.02386 (0.00125)

(0.00083) (0.00116) (0.00099) (0.00093) (0.00071) (0.00104) (0.00086) (0.00091) (0.00083) (0.00104) (0.00618) (0.00099)

c ¼ 0:01, ^c

(0.00828) (0.01348) (0.01095) (0.00950) (0.00820) (0.01177) (0.01026) (0.01024) (0.01113) (0.01097) (0.00968) (0.01504)

0.02580 0.02186 0.02331 0.02588 0.02433 0.02192 0.02285 0.02334 0.02189 0.02330 0.02344 0.02008 Note. The values in parentheses are sample mean squared error (SMSE) of ^c and k^ and Ô*Õ 1 2 3 4 5 6 7 8 9 10 11 12

0.01004 0.01298 0.01149 0.01082 0.00983 0.01207 0.01159 0.01033 0.01020 0.01039 0.01105 0.01401

(0.00005) (0.00008) (0.00006) (0.00006) (0.00005) (0.00007) (0.00006) (0.00005) (0.00004) (0.00006) (0.00006) (0.00007)

(0.00666) (0.00962) (0.00827) (0.00726) (0.00713) (0.00908) (0.00825) (0.00819) (0.00900) (0.00828) (0.00825) (0.01069)

(0.00039) (0.00027) (0.00030) (0.00040) (0.00032) (0.00025) (0.00027) (0.00027) (0.00024) (0.00030) (0.00027) (0.00020)

(0.1401) (0.1408) (0.0662) (0.3134) (0.3427) (0.0445) (0.2056) (0.2736) (0.0536) (0.0614) (0.1403) (0.2102)

(0.5608) (0.4571) (0.5418) (0.4855) (0.4288) (0.4132) (0.6287) (0.6386) (0.4291) (0.5945) (0.7068) (0.5122)

express SMSE less than Method 12.

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

True value method

Table 6 The UWLS, WLS and ML estimates of c and k for m ¼ 30, n ¼ 30 c ¼ 0:01, ^c

k ¼ 0:01, k^

c ¼ 0:1, ^c

k ¼ 0:01, k^

c ¼ 2:0, ^c

k ¼ 0:01, k^

1 2 3 4 5 6 7 8 9 10 11 12

0.07070 0.08837 0.08021 0.07410 0.06721 0.08205 0.07771 0.07119 0.07568 0.08053 0.06355 0.07790

0.02505 (0.00026) 0.02469 (0.00026) 0.02479 (0.00026) 0.02618 (0.00030) 0.02559 (0.00028) 0.02549 (0.00028) 0.02539 (0.00027) 0.02636 (0.00031) 0.02569 (0.00028) 0.02478 (0.00026) 0.02729 (0.00034) 0.02332 (0.00241)

0.12255 0.15620 0.13711 0.12839 0.11644 0.14350 0.13003 0.11006 0.13476 0.13647 0.12046 0.13135

0.02807 (0.00038) 0.02736 (0.00036) 0.02784 (0.00037) 0.02921 (0.00043) 0.02858 (0.00039) 0.02823 (0.00038) 0.02856 (0.00039) 0.02688 (0.00030) 0.02879 (0.00041) 0.02782 (0.00037) 0.03059 (0.00048) 0.02921 (0.00265)

1.6523 1.9855 1.8384 1.7218 1.7589 1.9649 1.8826 1.9285 1.9467 1.8397 1.8408 1.7855

0.04146 (0.00141) 0.03401 (0.00090) 0.03707 (0.00108) 0.04141 (0.00142) 0.03775 (0.00104) 0.03363 (0.00080) 0.03518 (0.00088) 0.03494 (0.00085) 0.03473 (0.00086) 0.03700 (0.00108) 0.03758 (0.00098) 0.03561 (0.00545)

c ¼ 0:01, ^c

k ¼ 0:02, k^

c ¼ 0:1, ^c

k ¼ 0:02, k^

c ¼ 2:0, ^c

k ¼ 0:02, k^

0.13062 0.16327 0.14950 0.14173 0.12624 0.15096 0.13699 0.13385 0.13650 0.15190 0.12643 0.09648

0.04956 0.04972 0.04947 0.05114 0.05107 0.05168 0.05190 0.05373 0.05275 0.04943 0.05466 0.02182

0.08106 0.09788 0.09088 0.08439 0.08596 0.09724 0.09265 0.09470 0.09780 0.08999 0.09550 0.10775

0.02680 (0.00042) 0.02262 (0.00028) 0.02449 (0.00034) 0.02705 (0.00044) 0.02488 (0.00032) 0.02226 (0.00023) 0.02329 (0.00027) 0.02328 (0.00026) 0.02220 (0.00023) 0.02460 (0.00035) 0.02360 (0.00027) 0.02358 (0.00028)

1.6299 2.0093 1.8261 1.7083 1.6845 1.9278 1.8587 1.7083 1.8771 1.9733 1.8148 1.7855

0.07580 (0.00531) 0.06577 (0.00408) 0.07067 (0.00466) 0.07666 (0.00550) 0.07323 (0.00480) 0.06673 (0.00395) 0.07121 (0.00366) 0.07666 (0.00550) 0.06947 (0.00424) 0.06508 (0.00371) 0.06998 (0.00439) 0.05620 (0.00652)

1 2 3 4 5 6 7 8 9 10 11 12

(0.00765) (0.00927) (0.00962) (0.00812) (0.00662) (0.00995) (0.00865) (0.00792) (0.00824) (0.00970) (0.00613) (0.00927)

(0.02762) (0.04236) (0.03574) (0.03129) (0.02500) (0.03533) (0.02981) (0.02925) (0.02987) (0.03677) (0.02632) (0.01589)

(0.00170) (0.00174) (0.00171) (0.00184) (0.00183) (0.00190) (0.00191) (0.00208) (0.00199) (0.00171) (0.00215) (0.01922)

(0.02113) (0.03299) (0.02650) (0.02336) (0.01898) (0.02813) (0.02372) (0.01025) (0.02423) (0.02534) (0.01985) (0.02174)

(0.00610) (0.00889) (0.00766) (0.00663) (0.00657) (0.00847) (0.00766) (0.00808) (0.00843) (0.00755) (0.00791) (0.01018)

(0.1005) (0.3238) (0.0492) (0.3381) (0.3585) (0.1467) (0.2017) (0.0286) (0.0398) (0.0564) (0.5426) (0.2101)

(0.1508) (0.2152) (0.1715) (0.4253) (0.2483) (0.1171) (0.1245) (0.1253) (0.0501) (0.1918) (0.1989) (0.1441)

145

Note. The values in parentheses are sample mean squared error (SMSE) of ^c and k^ and Ô*Õ express SMSE less than Method 12.

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

True value method

146

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

than ML estimates in c ¼ 2:0, k ¼ 0:01; (e) for m ¼ 10, n ¼ 30, the estimates obtained by Method 1, Methods 5–7 and Methods 9–11 are better than ML estimates in c ¼ 2:0, k ¼ 0:02; (f) for m ¼ 30, n ¼ 10, the performance of UWLS and WLS estimates is better than ML estimates in c ¼ 0:1, k ¼ 0:01 and c ¼ 0:01, k ¼ 0:02, respectively; (g) for m ¼ 30, n ¼ 10, the UWLS estimates obtained by Method 3 and the WLS estimates obtained by Method 7 and Method 9 are better than ML estimates in c ¼ 0:01, 0.1, 2.0, k ¼ 0:01; (h) for m ¼ 30, n ¼ 30, the WLS estimates obtained by Method 8 are better than ML estimates in c ¼ 0:01, 0.1, 2.0, k ¼ 0:01; (i) for m ¼ 30, n ¼ 30, generally the UWLS and WLS estimates are better than ML estimates in c ¼ 0:01, k ¼ 0:01; (j) for m ¼ 30, n ¼ 30, the WLS estimates obtained by Methods 6–10 are better than ML estimates in c ¼ 2:0, k ¼ 0:01 and (k) for m ¼ 30, n ¼ 30, the WLS estimates obtained by Methods 6–9 are better than ML estimates in c ¼ 0:1, 2.0, k ¼ 0:02. In addition, from the above results, it is suggested that Method 9 is useful for estimating c and k under the first failured-censored data.

4. Concluding remarks In summary, least squares methods often provide simple and fairly effective ways of obtaining estimates with complete data and the first failured-censored data. The procedures described were based on transform of F ðxÞ, which is the Gompertz cumulative distribution function. Results from simulation studies illustrate the performance of the WLS estimates is acceptable.

Acknowledgement This research was partially supported by the National Science Council, ROC (Plan No. NSC 89-2118-M-032-013).

References [1] U. Balasooriya, Failure-censored reliability sampling plans for the exponential distribution, Journal of Statistical Computation and Simulation 52 (1995) 337–349. [2] V. Barnett, Probability plotting methods and order statistics, Applied Statistics 24 (1975) 95– 108. [3] Z. Chen, Parameter estimation of the Gompertz population, Biometrical Journal 39 (1997) 117–124. [4] R.B. DÕAgostino, M.A. Stephens, Goodness-of-fit Techniques, Marcel Dekker, New York, 1986. [5] B. Faucher, W.R. Tyson, On the determination of Weibull parameters, Journal of Materials Science Letters 7 (1988) 1199–1203.

J.-W. Wu et al. / Appl. Math. Comput. 158 (2004) 133–147

147

[6] P.H. Franses, Fitting a Gompertz curve, Journal of the Operational Research Society 45 (1994) 109–113. [7] M.L. Garg, B.R. Rao, C.K. Redmond, Maximum likelihood estimation of the parameters of the Gompertz survival function, Journal of the Royal Statistical Society C 19 (1970) 152–159. [8] B. Gompertz, On the nature of the function expressive of the law of human mortality and on the new mode of determining the value of life contingencies, Philosophical Transactions of Royal Society A 115 (1825) 513–580. [9] N.H. Gordon, Maximum likelihood estimation for mixtures of two Gompertz distributions when censoring occurs, Communications in Statistics B: Simulation and Computation 19 (1990) 733–747. [10] K.C. Kapur, L.R. Lamberson, Reliability in Engineering Design, Wiley, New York, 1977. [11] R. Langlois, Estimation of Weibull parameters, Journal of Materials Science Letters 10 (1991) 1049–1051. [12] J.F. Lawless, Statistical Models and Methods for Lifetime Data, Wiley, New York, 1982. [13] R. Makany, A theoretical basis of GompertzÕs curve, Biometrical Journal 33 (1991) 121–128. [14] B.R. Rao, C.V. Damaraju, New better than used and other concepts for a class of life distribution, Biometrical Journal 34 (1992) 919–935. [15] C.B. Read, Gompertz Distribution, Encyclopedia of Statistical Sciences, Wiley, New York, 1983. [16] S.M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, Wiley, New York, 1987. [17] J.W. Wu, W.C. Lee, Characterization of the mixtures of Gompertz distributions by conditional expectation of order statistics, Biometrical Journal 41 (1999) 371–381.