Existence of bounded solutions of a class of ... - Semantic Scholar

Report 1 Downloads 107 Views
Applied Mathematics and Computation 231 (2014) 478–488

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Existence of bounded solutions of a class of neutral systems of functional differential equations Stevo Stevic´ ⇑ Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

a r t i c l e

i n f o

a b s t r a c t Some results on the existence of bounded solutions together with their first derivatives of a class of neutral systems of functional differential equations with complicated deviations, which extend and unify numerous results in the literature, are proved. Ó 2014 Elsevier Inc. All rights reserved.

Keywords: Bounded C 1 solutions System of functional differential equations Iterated deviations Lipschitz derivative

1. Introduction and preliminaries Special cases of the following system of functional differential equations, which is partially solved with respect to the first derivatives of dependent variables,

x0 ðt þ 1Þ ¼ Ax0 ðtÞ þ Uðt; xðtÞ; xðf1 ðt; xðtÞÞÞ; x0 ðf2 ðt; xðtÞÞÞÞ; N 3

N

ð1Þ

N

where t 2 Rþ ¼ ½0; 1Þ; U : Rþ  ðR Þ ! R ; f i : Rþ  R ! Rþ ; i ¼ 1; 2, have attracted some attention among the experts in the research field (see, for example, [1,14,19,20,22,23,44,47,48]). For some other results on systems/equations not solved with respect to the highest-order derivatives, see, for example, [3–13,16–18,21,24,38,40,46,49]. Based on the idea of iterations of some iterative processes (see, for example, [2,15,25–37,42]) in [38–41,43–47], we proposed the investigation of various types of systems/equations with continuous arguments, whose deviations of an argument depend on an unknown function which depend also of the function and so on, so called, iterated deviations. Motivated by the line of investigations in the papers [4,13,16,17,21,22,38,39,44,46–48], here we investigate the existence of bounded C 1 solutions of the next system of functional differential equations ð1Þ

ðkÞ

ð1Þ

ðlÞ

x0 ðt þ 1Þ ¼ Ax0 ðtÞ þ Uðt; xðv 1 ðtÞÞ; . . . ; xðv 1 ðtÞÞ; x0 ðu1 ðtÞÞ; . . . ; x0 ðu1 ðtÞÞÞ;

ð2Þ

on Rþ , where

v rðjÞ ðtÞ ¼ ujr ðt; xðuj rþ1 ðt; . . . xðujm ðt; xðtÞÞÞ . . .ÞÞÞ; j

upðiÞ ðtÞ ¼ wip ðt; xðwi pþ1 ðt; . . . xðwili ðt; xðtÞÞÞ . . .ÞÞÞ; kþl

j ¼ 1; k; r ¼ 1; mj ; i ¼ 1; l; p ¼ 1; li , U : Rþ  ðRN Þ ! RN , ujr ; wip : Rþ  RN ! Rþ ; j ¼ 1; k, r ¼ 1; mj ; i ¼ 1; l; p ¼ 1; li ; A is a nonsingular matrix, extending and unifying numerous results in the literature. We use also the following convention ðiÞ v ðjÞ m þ1 ðtÞ ¼ ul þ1 ðtÞ ¼ t; j

i

j ¼ 1; k; i ¼ 1; l:

⇑ Address: Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia. E-mail address: [email protected] 0096-3003/$ - see front matter Ó 2014 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.amc.2013.12.151

ð3Þ

S. Stevic´ / Applied Mathematics and Computation 231 (2014) 478–488

479

As usual, by CðRþ Þ we denote the space of continuous vector functions on Rþ , while by C 1 ðRþ Þ the space of all continuously differentiable vector functions on Rþ . The subspace of C 1 ðRþ Þ consisting of all bounded vector functions together with their first derivatives on Rþ is denoted by BC 1 ðRþ Þ. The norm on BC 1 ðRþ Þ is

kxkBC 1 ðRþ Þ

( )   0 0 ¼ max kxk1 ; kx k1 ¼ max supjxðtÞj; supjx ðtÞj ; t2Rþ

t2Rþ

where for y 2 RN ; jyj denotes a norm on RN . The following folklore lemma, which can be found, for example, in [46], will be frequently applied in the proofs of our main results. Lemma 1. Assume that ðan Þn2N and ðbn Þn2N are two sequences of nonnegative numbers, and that sequence ðxn Þn2N satisfies the inequality

xn 6 an þ bn xnþ1 ;

n 2 N:

Then

x1 6

j1 k1 Y k1 X Y aj bi þ xk bi ; j¼1

k 2 N:

i¼1

i¼1

2. Main results First, we give a list of some conditions which will be used in the formulations of the main results in this paper. (a) Vector function Uðt; x1 ; . . . ; xkþl Þ is continuous for t 2 Rþ ; xj 2 RN ; j ¼ 1; k þ l,

Uðt; 0; . . . ; 0Þ  0;

ð4Þ

jUðt; x01 ; . . . ; x0kþl Þ  Uðs; x001 ; . . . ; x00kþl Þj 6 c0 ðt; sÞjt  sj þ

kþl X

cj ðt; sÞjx0j  x00j j;

ð5Þ

j¼1

where cj ðt; sÞ; j ¼ 0; k þ l are continuous and nonnegative functions for t; s 2 Rþ , and x0j ; x00j 2 RN , j ¼ 1; k þ l; (b) ujr ðt; xÞ; j ¼ 1; k; r ¼ 1; mj , and wip ðt; xÞ; i ¼ 1; l; p ¼ 1; li , are continuous and nonnegative functions for t 2 Rþ and x 2 RN , and ð1Þ

ð2Þ

j ¼ 1; k; r ¼ 1; mj ;

ð3Þ

ð4Þ

i ¼ 1; l; p ¼ 1; li ;

jujr ðt; xÞ  ujr ðs; yÞj 6 kjr jt  sj þ kjr jx  yj; jwip ðt; xÞ  wip ðs; yÞj 6 kip jt  sj þ kip jx  yj; N

for every t; s 2 Rþ , and x; y 2 R , and for some positive constants (c) for every j ¼ 0; k þ l, the series

Cj ðt; sÞ ¼

i¼0

i¼0

ð7Þ

ð1Þ kjr ;

Z 1 1 X X jA1 jiþ1 cj ðt þ i; s þ iÞ and Gj ðtÞ ¼ jA1 jiþ1

t

ð6Þ

ð2Þ kjr ;

j ¼ 1; k; r ¼ 1; mj ;

ð3Þ kip ;

ð4Þ kip ;

i ¼ 1; l; p ¼ 1; li ;

1

cj ðs þ i; s þ iÞds;

converge uniformly for t; s 2 Rþ , and for some d 2 ð0; 1Þ, satisfy the condition

(

max

sup

kþl X

kþl X Cj ðt; sÞ; sup Gj ðtÞ

t;s2Rþ j¼0

)

6 d:

ð8Þ

t2Rþ j¼0

Theorem 1. Suppose that conditions (a)–(c) hold. Then for any BC 1 ðRþ Þ solution of system (2), such that

lim jxðt þ 1Þ  AxðtÞj ¼ 0;

ð9Þ

t!þ1

and

jx0 ðtÞ  x0 ðsÞj 6 Ljt  sj

ð10Þ 1

for every t; s 2 Rþ and some L > 0, there is a C vector function a with the Lipschitz first derivative and such that

aðt þ 1Þ ¼ AaðtÞ;

ð11Þ

lim jxðtÞ  aðtÞj ¼ 0:

ð12Þ

t!þ1

S. Stevic´ / Applied Mathematics and Computation 231 (2014) 478–488

480

Proof. Assume x 2 BC 1 ðRþ Þ is a solution of system (2) such that (9) and (10) hold. Set

Z 1 X iþ1 ðA1 Þ

aðtÞ :¼ xðtÞ 

1

ðlÞ 0 Uðs þ i; xðv 1ð1Þ ðs þ iÞÞ; . . . ; xðv 1ðkÞ ðs þ iÞÞ; x0 ðuð1Þ 1 ðs þ iÞÞ; . . . ; x ðu1 ðs þ iÞÞÞds:

t

i¼0

ð13Þ

Using (4) and (5) it is not difficult to see that

  Z 1  X 1   ð1Þ ðkÞ ð1Þ ðlÞ 1 iþ1 0 0 ðA Þ U ð s þ i; xð v ð s þ iÞÞ; . . . ; xð v ð s þ iÞÞ; x ðu ð s þ iÞÞ; . . . ; x ðu ð s þ iÞÞÞd s   1 1 1 1   i¼0 t 6

1 X

jA1 jiþ1

Z

1

k X

Z 1 X jA1 jiþ1

j¼1

i¼0

cj ðs þ i; s þ iÞjxðv ðjÞ 1 ðs þ iÞÞjds þ

t

i¼0

6 kxkBC 1 ðRþ Þ

t

1

l X

ckþp ðs þ i; s þ iÞjx0 ðu1ðpÞ ðs þ iÞÞjds

p¼1

kþl X Gj ðtÞ;

ð14Þ

j¼1

which means that the sum in (13) is convergent. Thus, aðtÞ is well-defined on Rþ . Clearly, (13) along with (14) implies

jxðtÞ  aðtÞj 6 kxkBC 1 ðRþ Þ

kþl X Gj ðtÞ ! 0;

as t ! þ1;

ð15Þ

j¼1

that is, (12) holds, where the last limit follows from the uniform convergence of series Gj ðtÞ; j ¼ 1; k þ l, as sums of functions in CðRþ Þ tending to zero as t ! þ1. Moreover, due to the uniform convergence of Cj ðt; tÞ and Gj ðtÞ; j ¼ 1; k þ l, relation (13) can be differentiated on Rþ , so that

a0 ðtÞ ¼ x0 ðtÞ þ

1 X iþ1 ð1Þ ðkÞ ð1Þ ðlÞ ðA1 Þ Uðt þ i; xðv 1 ðt þ iÞÞ; . . . ; xðv 1 ðt þ iÞÞ; x0 ðu1 ðt þ iÞÞ; . . . ; x0 ðu1 ðt þ iÞÞÞ:

ð16Þ

i¼0

If we integrate (2) from t to t0 , then let t0 ! þ1, and employ (9), we have that

xðt þ 1Þ ¼ AxðtÞ 

Z

1

ðkÞ ð1Þ ðlÞ 0 0 Uðs; xðv ð1Þ 1 ðsÞÞ; . . . ; xðv 1 ðsÞÞ; x ðu1 ðsÞÞ; . . . ; x ðu1 ðsÞÞÞds:

t

ð17Þ

Using (17) we have

aðt þ 1Þ ¼ xðt þ 1Þ  ¼ AxðtÞ 

Z 1 X iþ1 ðA1 Þ 

Z 1 X i ðA1 Þ t

i¼1

¼ A xðtÞ 

ðkÞ ð1Þ ðlÞ 0 0 Uðs þ i;xðv ð1Þ 1 ðs þ iÞÞ; .. .; xðv 1 ðs þ iÞÞ;x ðu1 ðs þ iÞÞ;. .. x ðu1 ðs þ iÞÞÞds

ð1Þ ðlÞ 0 0 Uðs; xðv 1ð1Þ ðsÞÞ;. . .; xðv ðkÞ 1 ðsÞÞ;x ðu1 ðsÞÞ; .. .; x ðu1 ðsÞÞÞds

t



tþ1

i¼0 1

Z

1

1

ð1Þ ðlÞ 0 0 Uðs þ i; xðv 1ð1Þ ðs þ iÞÞ;. .. ;xðv ðkÞ 1 ðs þ iÞÞ; x ðu1 ðs þ iÞÞ;. . .; x ðu1 ðs þ iÞÞÞds

Z 1 X iþ1 ðA1 Þ

1 t

i¼0

! ðkÞ ð1Þ ðlÞ 0 0 Uðs þ i; xðv ð1Þ 1 ðs þ iÞÞ;. .. ;xðv 1 ðs þ iÞÞ; x ðu1 ðs þ iÞÞ;. .. ;x ðu1 ðs þ iÞÞÞds ¼ AaðtÞ;

which means that aðtÞ satisfies equality (11). Employing (10) in (16), we get

ja0 ðtÞ  a0 ðsÞj 6 jx0 ðtÞ  x0 ðsÞj þ

1 X ð1Þ ðkÞ ð1Þ ðlÞ jA1 jiþ1 jUðt þ i; xðv 1 ðt þ iÞÞ; . . . ; xðv 1 ðt þ iÞÞ; x0 ðu1 ðt þ iÞÞ; . . . ; x0 ðu1 ðt þ iÞÞÞ i¼0

ð1Þ

ðkÞ

ð1Þ

ðlÞ

 Uðs þ i; xðv 1 ðs þ iÞÞ; . . . ; xðv 1 ðs þ iÞÞ; x0 ðu1 ðs þ iÞÞ; . . . ; x0 ðu1 ðs þ iÞÞÞj 6 Ljt  sj þ

1 1 k X X X ðjÞ ðjÞ jA1 jiþ1 c0 ðt þ i; s þ iÞjt  sj þ jA1 jiþ1 cj ðt þ i; s þ iÞjxðv 1 ðt þ iÞÞ  xðv 1 ðs þ iÞÞj i¼0

i¼0

j¼1

1 l X X ðpÞ ðpÞ þ jA1 jiþ1 ckþp ðt þ i; s þ iÞjx0 ðu1 ðt þ iÞÞ  x0 ðu1 ðs þ iÞÞj p¼1

i¼0

1 1 k X X X ðjÞ ðjÞ 6 Ljt  sj þ jA1 jiþ1 c0 ðt þ i; s þ iÞjt  sj þ kx0 k1 jA1 jiþ1 cj ðt þ i; s þ iÞjv 1 ðt þ iÞ  v 1 ðs þ iÞj i¼0 1 X

þL

i¼0

jA1 jiþ1

i¼0 l X

ðpÞ ckþp ðt þ i; s þ iÞjuðpÞ 1 ðt þ iÞ  u1 ðs þ iÞj:

p¼1

j¼1

ð18Þ

S. Stevic´ / Applied Mathematics and Computation 231 (2014) 478–488

481

We have that for each j 2 f1; . . . ; kg and every 1 6 m 6 mj , ðjÞ

ðjÞ

ð1Þ

ð2Þ

ðjÞ

ðjÞ

ðjÞ jv ðjÞ m ðtÞ  v m ðsÞj ¼ jujm ðt; xðv mþ1 ðtÞÞÞ  ujm ðs; xðv mþ1 ðsÞÞÞj 6 kj m jt  sj þ kj m jxðv mþ1 ðtÞÞ  xðv mþ1 ðsÞÞj ð1Þ

ð2Þ

ðjÞ

ðjÞ

6 kj m jt  sj þ kj m kx0 k1 jv mþ1 ðtÞ  v mþ1 ðsÞj: Hence by using Lemma 1 with am ¼ ðjÞ

ðjÞ

jv 1 ðtÞ  v 1 ðsÞj 6 jt  sj

ð1Þ kj m jt

 sj and bm ¼

ð19Þ

ð2Þ kj m kx0 k1 ,

we have that

! jY m m 1 1 X Y ð1Þ ð2Þ ð2Þ ðjÞ ðjÞ jv mþ1 ðtÞ  v mþ1 ðsÞj; kx0 kj11 1 kjj1 kji þ kx0 km k 1 ji i¼1

j1 ¼1

ð20Þ

i¼1

holds for each j 2 f1; . . . ; kg and every 1 6 m 6 mj . Choosing m ¼ mj in (20) and by using (3), we get

jv

ðjÞ 1 ðtÞ

v

ðjÞ 1 ðsÞj

6

! mj mj jY 1 1 X Y ð2Þ ð2Þ 0 j1 1 ð1Þ 0 mj kx k1 kjj1 kji þ kx k1 kji jt  sj: i¼1

j1 ¼1

ð21Þ

i¼1

Analogously, employing (7) and Lemma 1, it is obtained that ðiÞ

ðiÞ

ju1 ðtÞ  u1 ðsÞj 6

! li li j1 X Y Y ð3Þ ð4Þ ð4Þ 0 li jt  sj: kx0 kj1 k k þ kx k k 1 1 ij ii1 ii1 j¼1

ð22Þ

i1 ¼1

i1 ¼1

From (18), (21) and (22) it follows that 0

0

ja ðtÞ  a ðsÞj 6 ðL þ C0 ðt; sÞÞjt  sj þ

! mj mj jY 1 1 X Y ð2Þ ð2Þ 0 j1 ð1Þ 0 mj þ1 Cj ðt; sÞ kx k1 kjj1 kji þ kx k1 kji jt  sj

k X

j1 ¼1

j¼1

i¼1

i¼1

! li li j1 l X X Y Y ð3Þ ð4Þ ð4Þ 0 li þ L Ckþi ðt; sÞ kx0 kj1 k k þ kx k k jt  sj 6 L1 jt  sj; 1 ij 1 ii1 ii1 j¼1

i¼1

i1 ¼1

i1 ¼1

where

L1 ¼ sup

L þ C0 ðt; sÞ þ

t;s2Rþ

k X

mj mj jY 1 1 X Y ð1Þ ð2Þ ð2Þ mj þ1 kx0 kj11 kjj1 kji þ kx0 k1 kji

j¼1

j1 ¼1

Cj ðt; sÞ

i¼1

li li j1 l X X Y Y ð3Þ ð4Þ ð4Þ 0 li þ L Ckþi ðt; sÞ kx0 kj1 k k þ kx k kii1 1 1 ij ii1 j¼1

i¼1

(L1 is finite due to (8)).

i1 ¼1

!!

!

i¼1

;

i1 ¼1

h

Theorem 2. Suppose that conditions (a)–(c) hold, M :¼ supn2N jAn j < 1, and a is a C 1 vector function satisfying relation (11) and

ja0 ðtÞ  a0 ðsÞj 6 L1 jt  sj

ð23Þ ð2Þ kj1 ;

ð3Þ ki1 ;

for every t; s 2 Rþ and some L1 > 0. Then for sufficiently small j ¼ 1; k; solution with the Lipschitz first derivative, and satisfying conditions (9) and (12).

ð4Þ ki1 ,

1

i ¼ 1; l, system (2) has a unique BC ðRþ Þ

Proof. Suppose x 2 BC 1 ðRþ Þ is a solution of system (2) satisfying (9) and (12). Let

a1 ðtÞ :¼ xðtÞ 

Z 1 X iþ1 ðA1 Þ

1

t

i¼0

ð1Þ ðlÞ 0 0 Uðs þ i; xðv 1ð1Þ ðs þ iÞÞ; . . . ; xðv ðkÞ 1 ðs þ iÞÞ; x ðu1 ðs þ iÞÞ; . . . ; x ðu1 ðs þ iÞÞÞds:

The proof of Theorem 1 shows that xðtÞ is also a solution of the system

xðtÞ ¼ a1 ðtÞ þ

Z 1 X iþ1 ðA1 Þ i¼0

t

1

ðlÞ 0 Uðs þ i; xðv 1ð1Þ ðs þ iÞÞ; . . . ; xðv 1ðkÞ ðs þ iÞÞ; x0 ðuð1Þ 1 ðs þ iÞÞ; . . . ; x ðu1 ðs þ iÞÞÞds:

Moreover, a1 satisfies relation (11), and

lim ðxðtÞ  a1 ðtÞÞ ¼ 0:

t!þ1

Let s 2 ½0; 1Þ. Then, from (12) and (24) it follows that

jaðsÞ  a1 ðsÞj ¼ jAn ðaðs þ nÞ  a1 ðs þ nÞÞj 6 Mðjaðs þ nÞ  xðs þ nÞj þ jxðs þ nÞ  a1 ðs þ nÞjÞ ! 0;

ð24Þ

S. Stevic´ / Applied Mathematics and Computation 231 (2014) 478–488

482

as n ! þ1, that is, aðsÞ ¼ a1 ðsÞ. From this and (11) we have that aðsÞ ¼ a1 ðsÞ for every s 2 Rþ . Hence

xðtÞ ¼ aðtÞ þ

Z 1 X iþ1 ðA1 Þ

1

t

i¼0

ðkÞ ð1Þ ðlÞ 0 0 Uðs þ i; xðv ð1Þ 1 ðs þ iÞÞ; . . . ; xðv 1 ðs þ iÞÞ; x ðu1 ðs þ iÞÞ; . . . ; x ðu1 ðs þ iÞÞÞds:

ð25Þ

If x 2 BC 1 ðRþ Þ is a solution of system (25), then it is a solution of system (2) satisfying (9) and (12). To show this, first note that (14) implies the uniform convergence of the series

Z 1 X iþ1 ðA1 Þ

1

ðkÞ ð1Þ ðlÞ 0 0 Uðs þ i; xðv ð1Þ 1 ðs þ iÞÞ; . . . ; xðv 1 ðs þ iÞÞ; x ðu1 ðs þ iÞÞ; . . . ; x ðu1 ðs þ iÞÞÞds;

t

i¼0

on Rþ , as well as relation (12). From (4) and (5), we get

   X 1   ð1Þ ðkÞ ð1Þ ðlÞ 1 iþ1  ðA Þ Uðt þ i; xðv 1 ðt þ iÞÞ; . . . ; xðv 1 ðt þ iÞÞ; x0 ðu1 ðt þ iÞÞ; . . . ; x0 ðu1 ðt þ iÞÞÞ   i¼0 ! 1 k l kþl X 1 iþ1 X X X ðjÞ ðpÞ 0 6 jA j cj ðt þ i; t þ iÞjxðv 1 ðt þ iÞÞj þ ckþp ðt þ i; t þ iÞjx ðu1 ðt þ iÞÞj 6 kxkBC1 ðRþ Þ Cj ðt; tÞ: i¼0

p¼1

j¼1

j¼1

This and the uniform convergence of Cj ðt; tÞ, j ¼ 1; k þ l, implies the uniform convergence of the series 1 X iþ1 ð1Þ ðkÞ ð1Þ ðlÞ ðA1 Þ Uðt þ i; xðv 1 ðt þ iÞÞ; . . . ; xðv 1 ðt þ iÞÞ; x0 ðu1 ðt þ iÞÞ; . . . ; x0 ðu1 ðt þ iÞÞÞ: i¼0

Hence the differentiation of the series in (25) is allowed, and we get 1 X iþ1 ð1Þ ðkÞ ð1Þ ðlÞ ðA1 Þ Uðt þ i; xðv 1 ðt þ iÞÞ; . . . ; xðv 1 ðt þ iÞÞ; x0 ðu1 ðt þ iÞÞ; . . . ; x0 ðu1 ðt þ iÞÞÞ:

x0 ðtÞ ¼ a0 ðtÞ 

i¼0

Using this and the relation a0 ðt þ 1Þ ¼ Aa0 ðtÞ, which follows by differentiating (11), we see that xðtÞ is a solution of system (2). Since

Z  jxðt þ 1Þ  AxðtÞj ¼ 

1 t

 

ðkÞ ð1Þ ðlÞ 0 0  Uðs; xðv ð1Þ 1 ðsÞÞ; . . . ; xðv 1 ðsÞÞ; x ðu1 ðsÞÞ; . . . ; x ðu1 ðsÞÞÞds 6 kxkBC 1 ðRþ Þ

kþl X Gj ðtÞ ! 0; j¼1

as t ! þ1, we get that condition (9) holds. Due to just proved equivalence we will consider system of equations (25) instead of (2). Now we define two sequences ðxm ðtÞÞm2N0 and ðx0m ðtÞÞm2N0 , as follows

x0 ðtÞ ¼ aðtÞ;

x00 ðtÞ ¼ a0 ðtÞ;

xm ðtÞ ¼ aðtÞ þ

Z 1 X iþ1 ðA1 Þ

1

t

i¼0

ðkÞ ð1Þ 0 Uðs þ i; xm1 ðv ð1Þ 1 m1 ðs þ iÞÞ; . . . ; xm1 ðv 1 m1 ðs þ iÞÞ; xm1 ðu1 m1 ðs þ iÞÞ; . . . ;

ðlÞ

x0m1 ðu1 m1 ðs þ iÞÞÞds; x0m ðtÞ ¼ a0 ðtÞ 

ð26Þ

1 X iþ1 ð1Þ ðkÞ ð1Þ ðA1 Þ Uðt þ i; xm1 ðv 1 m1 ðt þ iÞÞ; . . . ; xm1 ðv 1 m1 ðt þ iÞÞ; x0m1 ðu1 m1 ðt þ iÞÞ; . . . ; i¼0

ðlÞ

x0m1 ðu1 m1 ðt þ iÞÞÞ;

ð27Þ

where

v ðjÞ rm ðtÞ ¼ ujr ðt; xm ðuj rþ1 ðt; . . . xm ðuj m ðt; xm ðtÞÞÞ . . .ÞÞÞ; j

j ¼ 1; k; r ¼ 1; mj ;

and

uðiÞ pm ðtÞ ¼ wip ðt; xm ðwi pþ1 ðt; . . . xm ðwi li ðt; xm ðtÞÞÞ . . .ÞÞÞ;

i ¼ 1; l; p ¼ 1; li :

For every t 2 Rþ we have

jx0 ðtÞj 6 kakBC 1 ðRþ Þ 6

kakBC 1 ðRþ Þ 1d

and jx00 ðtÞj 6 kakBC 1 ðRþ Þ 6

Assume that the following inequalities hold for an m 2 N

kakBC 1 ðRþ Þ 1d

:

ð28Þ

S. Stevic´ / Applied Mathematics and Computation 231 (2014) 478–488

jxm1 ðtÞj 6

kakBC 1 ðRþ Þ

and jx0m1 ðtÞj 6

1d

kakBC 1 ðRþ Þ

t 2 Rþ :

;

1d

483

ð29Þ

Then (4), (5), (8), (26) and (29), imply

jxm ðtÞj 6 jaðtÞj þ

Z 1 X jA1 jiþ1

1

t

i¼0

ðkÞ ðlÞ 0 Uðs þ i; xm1 ðv ð1Þ 1 m1 ðs þ iÞÞ; . . . ; xm1 ðv 1 m1 ðs þ iÞÞ; . . . ; xm1 ðu1 m1 ðs þ iÞÞÞjds

1 k Z X X 6 jaðtÞj þ jA1 jiþ1 i¼0

þ

1 X

jA1 j

p¼1

i¼0

1

t

cj ðs þ i; s þ iÞjxm1 ðv ðjÞ 1 m1 ðs þ iÞÞjds

t

j¼1

l Z X iþ1

1

ckþp ðs þ i; s þ iÞjx0m1 ðu1ðpÞm1 ðs þ iÞÞjds

kþl kakBC 1 ðRþ Þ X kakBC 1 ðRþ Þ Gj ðtÞ 6 : 1  d j¼1 1d

6 kakBC 1 ðRþ Þ þ

ð30Þ

From (4), (5), (8), (27) and (29), it follows that

jx0m ðtÞj 6 ja0 ðtÞj þ

1 X

jA1 jiþ1 jUðt þ i; xm1 ðv 1 m1 ðt þ iÞÞ; .. .; xm1 ðv 1 m1 ðt þ iÞÞ; x0m1 ðu1 m1 ðt þ iÞÞ;. .. ;x0m1 ðu1 m1 ðt þ iÞÞÞj ð1Þ

ðkÞ

ð1Þ

ðlÞ

i¼0

6 kakBC 1 ðRþ Þ þ

1 k 1 l X X X X ðjÞ ðpÞ jA1 jiþ1 cj ðt þ i; t þ iÞjxm1 ðv 1 m1 ðt þ iÞÞj þ jA1 jiþ1 ckþp ðt þ i;t þ iÞjx0m1 ðu1 m1 ðt þ iÞÞj i¼0

6 kakBC 1 ðRþ Þ þ

j¼1

1d

p¼1

i¼0

kþl kakBC 1 ðRþ Þ X

Cj ðt; tÞ 6

kakBC 1 ðRþ Þ

j¼1

1d

ð31Þ

:

From (28), (30), (31) and by the induction we have that

jxm ðtÞj 6

kakBC 1 ðRþ Þ

and jx0m ðtÞj 6

1d

kakBC 1 ðRþ Þ

ð32Þ

1d

for every t 2 Rþ and m 2 N0 . By (5), (23), (27) and (32), we have that

jx01 ðtÞ  x01 ðsÞj 6 ja0 ðtÞ  a0 ðsÞj þ

1 X ð1Þ ðkÞ ð1Þ jA1 jiþ1 jUðt þ i; x0 ðv 1 0 ðt þ iÞÞ; . . . ; x0 ðv 1 0 ðt þ iÞÞ; x00 ðu1 0 ðt þ iÞÞ; . . . ; i¼0

ðlÞ

ð1Þ

ðkÞ

ð1Þ

ðlÞ

x00 ðu1 0 ðt þ iÞÞÞ  Uðs þ i; x0 ðv 1 0 ðs þ iÞÞ; . . . ; x0 ðv 1 0 ðs þ iÞÞ; x00 ðu1 0 ðs þ iÞÞ; . . . ; x00 ðu1 0 ðs þ iÞÞÞj 6 ja0 ðtÞ  a0 ðsÞj þ

1 1 k X X X ðjÞ jA1 jiþ1 c0 ðt þ i; s þ iÞjt  sj þ jA1 jiþ1 cj ðt þ i; s þ iÞjaðv 1 0 ðt þ iÞÞ i¼1

i¼0

j¼1

1 l X X ðjÞ ðpÞ ðpÞ  aðv 1 0 ðs þ iÞÞj þ jA1 jiþ1 ckþp ðt þ i; s þ iÞja0 ðu1 0 ðt þ iÞÞ  a0 ðu1 0 ðs þ iÞÞj 6 L1 jt  sj p¼1

i¼0

1 1 k X X X ðjÞ ðjÞ jA1 jiþ1 c0 ðt þ i; s þ iÞjt  sj þ kakBC 1 ðRþ Þ jA1 jiþ1 cj ðt þ i; s þ iÞjv 1 0 ðt þ iÞ  v 1 0 ðs þ iÞj þ i¼1

i¼0

j¼1

1 l X X ðpÞ ðpÞ þ L1 jA1 jiþ1 ckþp ðt þ i; s þ iÞju1 0 ðt þ iÞ  u1 0 ðs þ iÞj:

ð33Þ

p¼1

i¼0 ðjÞ

ðjÞ

ðpÞ

ðpÞ

ð1Þ

The estimates for jv 1 0 ðt þ iÞ  v 1 0 ðs þ iÞj and ju1 0 ðt þ iÞ  u1 0 ðs þ iÞj are obtained by Lemma 1 with am ¼ kjm jt  sj and ð2Þ ð3Þ ð4Þ bm ¼ kjm kakBC 1 ðRþ Þ , that is, for am ¼ kjm jt  sj and bm ¼ kjm kakBC 1 ðRþ Þ . From this and (33), it follows that

jx01 ðtÞ  x01 ðsÞj 6 ðL1 þ C0 ðt; sÞÞjt  sj þ þ L1

6

l X

li X

i¼1

j¼1

Ckþi ðt; sÞ

L 1 þ C0 þ

Cj

j1 ¼1

j¼1

þ L1

l X i¼1

j¼1

Ckþi

ð3Þ

þ

mj X

j¼1

j1 ¼1

Cj ðt; sÞ

j1 Y i1 ¼1

j

þ

li Y

l

ð4Þ

ð1Þ

1 kakBC k 1 ðR Þ jj1

kii1 þ kakBCi 1 ðR

þÞ

! ð4Þ

kii1

i1 ¼1

mj mj jY 1 1 X Y m þ1 j1 ð1Þ ð2Þ ð2Þ kakBC k kji þ kakBCj 1 ðR Þ kji 1 ðR Þ jj1

k X

li X

kakj1 k BC 1 ðR Þ ij

k X

ð3Þ kj1 k BC 1 ðRþ Þ ij

ka

þ

j1 Y i1 ¼1

þ

i¼1

ð4Þ kii1

li Y

li

þ kakBC 1 ðR

þÞ

i1 ¼1

jY 1 1 i¼1

ð2Þ

m þ1

kji þ kakBCj 1 ðR

þ

! mj Y ð2Þ k jt  sj ji Þ i¼1

jt  sj !

i¼1

!!

ð4Þ kii1

jt  sj 6 ~Ljt  sj;

ð34Þ

S. Stevic´ / Applied Mathematics and Computation 231 (2014) 478–488

484

where Cj :¼ supt;s2Rþ Cj ðt; sÞ; j ¼ 0; k þ l and

L 1 þ C0 þ ~L ¼ 1

Pk

Pmj

j¼1 Cj

Pl

i¼1 Ckþi



kakBC 1 ðR

j1 ¼1

Pli



j1

ð1Þ Qj1 1 ð2Þ i¼1 kji

kjj1

1d

kakBC 1 ðR

j¼1

þÞ

þÞ

j1

ð3Þ Qj1 ð4Þ i1 ¼1 kii1

kij

1d



kakBC 1 ðR

þ

mj þ1

kakBC 1 ðR

þÞ

li

!

Qm j

ð2Þ

i¼1 kji

1d

 þ

þÞ

!

Qli

;

ð4Þ

i1 ¼1 kii1

1d

ð3Þ ð4Þ L is positive. where kii1 ; kii1 ; i ¼ 1; l, i1 ¼ 1; li are chosen such that the denominator of ~ Assume that for some m 2 N and every t; s 2 Rþ

jx0m ðtÞ  x0m ðsÞj 6 ~Ljt  sj:

ð35Þ

By (5), (27) and (32), we obtain 1 X iþ1 ð1Þ ðkÞ ð1Þ jðA1 Þ Uðt þ i; xm ðv 1 m ðt þ iÞÞ; . . . ; xm ðv 1 m ðt þ iÞÞ; x0m ðu1 m ðt þ iÞÞ; . . . ;

jx0mþ1 ðtÞ  x0mþ1 ðsÞj 6 ja0 ðtÞ  a0 ðsÞj þ

i¼0 ðlÞ x0m ðu1 m ðt

iþ1

þ iÞÞÞ  ðA1 Þ

ðkÞ ð1Þ 0 Uðs þ i; xm ðv ð1Þ 1 m ðs þ iÞÞ; . . . ; xm ðv 1 m ðs þ iÞÞ; xm ðu1 m ðs þ iÞÞ; . . . ;

ðlÞ

x0m ðu1 m ðs þ iÞÞÞj 6 ja0 ðtÞ  a0 ðsÞj þ

1 X jA1 jiþ1 c0 ðt þ i; s þ iÞjt  sj i¼0

1 k X X ðjÞ ðjÞ jA1 jiþ1 cj ðt þ i; s þ iÞjxm ðv 1m ðt þ iÞÞ  xm ðv 1m ðs þ iÞÞj þ i¼0

þ

þ

j¼1

1 X

l X

i¼0

p¼1

jA1 jiþ1

ðpÞ 0 ckþp ðt þ i; s þ iÞjx0m ðuðpÞ 1m ðt þ iÞÞ  xm ðu1m ðs þ iÞÞj 6 L1 jt  sj

1 1 k X X kakBC 1 ðRþ Þ X ðjÞ ðjÞ jA1 jiþ1 c0 ðt þ i; s þ iÞjt  sj þ jA1 jiþ1 cj ðt þ i; s þ iÞjv 1m ðt þ iÞ  v 1m ðs þ iÞj 1  d i¼0 i¼0 j¼1

1 l X X ðpÞ ðpÞ þ ~L jA1 jiþ1 ckþp ðt þ i; s þ iÞju1m ðt þ iÞ  u1m ðs þ iÞj: i¼0

ð36Þ

p¼1

Since by (32) we have ð1Þ

ð2Þ

ðjÞ

ð1Þ

ð2Þ

kakBC 1 ðRþ Þ

ðjÞ

ðjÞ 0 jv ðjÞ rm ðt þ iÞ  v rm ðs þ iÞj 6 kjr jt  sj þ kjr kxm k1 jv rþ1 m ðt þ iÞ  v rþ1 m ðs þ iÞj

6 kjr jt  sj þ kjr

1d

ðjÞ

ðjÞ

jv rþ1 m ðt þ iÞ  v rþ1 m ðs þ iÞj

for j ¼ 1; k; r ¼ 1; mj , and ðjÞ

ðjÞ

ð3Þ ð4Þ ðpÞ 0 juðpÞ qm ðt þ iÞ  uqm ðs þ iÞj 6 kpq jt  sj þ kpq kxm k1 juqþ1 m ðt þ iÞ  uqþ1 m ðs þ iÞj ð4Þ 6 kð3Þ pq jt  sj þ kpq

kakBC 1 ðRþ Þ 1d

ðjÞ

ðjÞ

juqþ1 m ðt þ iÞ  uqþ1 m ðs þ iÞj

ð1Þ

ð2Þ

ð3Þ

for p ¼ 1; l; q ¼ 1; li , applying Lemma 1 with am ¼ kjm jt  sj and bm ¼ kjm kakBC 1 ðRþ Þ =ð1  dÞ, and with am ¼ kjm jt  sj and ð4Þ bm ¼ kjm kakBC 1 ðRþ Þ =ð1  dÞ, from (36) it easily follows that

jx0mþ1 ðtÞ



x0mþ1 ðsÞj

6 ðL1 þ C0 Þjt  sj þ

k X

0

Cj @

j¼1

mj X kakBC 1 ðRþ Þ j1 ¼1

1d

!j 1 ð1Þ kjj1

jY 1 1

ð2Þ kji

þ

i¼1

kakBC 1 ðRþ Þ 1d

!mj þ1

mj Y

1

ð2Þ kji Ajt

 sj

i¼1

0 1 !j1 !l l li j1 l i X X Y kakBC 1 ðRþ Þ kakBC 1 ðRþ Þ i Y ð3Þ ð4Þ ð4Þ ~ þ L Ckþi @ kij kii1 þ kii1 Ajt  sj 6 ~Ljt  sj: 1d 1d i¼1 j¼1 i ¼1 i ¼1 1

So by induction Lipschitz condition (35) holds for every m 2 N0 and t; s 2 Rþ . Let

aj1 ðtÞ ¼ uj1 ðt; aðuj2 ðt; . . . aðujmj ðt; aðtÞÞÞ . . .ÞÞÞ; and

a^ i1 ðtÞ ¼ wi1 ðt; aðwi2 ðt; . . . aðwili ðt; aðtÞÞÞ . . .ÞÞÞ:

1

ð37Þ

S. Stevic´ / Applied Mathematics and Computation 231 (2014) 478–488

485

Then by (4), (5), (8) and (26) we get

jx1 ðtÞ  x0 ðtÞj 6

1 X

jA1 jiþ1

1

^ 11 ðs þ iÞÞ . . . ; a0 ða ^ l1 ðs þ iÞÞÞjds jUðs þ i; aða11 ðs þ iÞÞ; . . . ; aðak1 ðs þ iÞÞ; a0 ða

t

i¼0

6

Z

1 X

jA1 jiþ1

i¼0

k Z X

cj ðs þ i; s þ iÞjaðaj1 ðs þ iÞÞjds þ

t

j¼1

6 kakBC 1 ðRþ Þ

1

1 l Z X X jA1 jiþ1 p¼1

i¼0

t

1

ckþp ðs þ i; s þ iÞja0 ða^ p1 ðs þ iÞÞjÞds

kþl X Gj ðtÞ 6 kakBC 1 ðRþ Þ d;

ð38Þ

j¼1

while by (4), (5), (8) and (27) we have that

jx01 ðtÞ  x00 ðtÞj 6

1 X

^ 11 ðt þ iÞÞ . . . ; a0 ða ^ l1 ðt þ iÞÞÞj jA1 jiþ1 jUðt þ i; aða11 ðt þ iÞÞ; . . . ; aðak1 ðt þ iÞÞ; a0 ða

i¼0

6

1 X

jA1 jiþ1

i¼0

6 kakBC 1 ðRþ Þ

k X

1 l X X ^ p1 ðt þ iÞÞj jA1 jiþ1 ckþp ðt þ i; t þ iÞja0 ða

j¼1

i¼0

cj ðt þ i; t þ iÞjaðaj1 ðt þ iÞÞj þ

p¼1

kþl X

Cj ðt; tÞ 6 kakBC 1 ðRþ Þ d:

ð39Þ

j¼1

Assume that for some m 2 N

jxm ðtÞ  xm1 ðtÞj 6 kakBC 1 ðRþ Þ qm

and jx0m ðtÞ  x0m1 ðtÞj 6 kakBC 1 ðRþ Þ qm ;

ð40Þ

where

0 q ¼ d @1 þ

max

8 !j j mj <X 1 kakBC 1 ðRþ Þ 1 Y

16j6k;16i6l:

j1 ¼1

1d

li X kakBC 1 ðRþ Þ

ð2Þ kji ; ~L

i¼1

j¼1

1d

!j1

91 j = Y ð4Þ A : kij ; i¼1

From (4), (5), (26), (32), (35) and (40), it follows that

jxmþ1 ðtÞ  xm ðtÞj 6

1 X

jA1 jiþ1

i¼0

þ

k Z X j¼1

1 X

jA1 jiþ1

1 X

jA1 jiþ1

i¼0

þ

p¼1

t

k Z X

1

j¼1

1 X

jA1 jiþ1

þ

j¼1

jA1 j

p¼1

1 X

jA1 jiþ1

p¼1

1

ðpÞ 0 ckþp ðs þ i; s þ iÞjx0m ðuðpÞ 1 m ðs þ iÞÞ  xm1 ðu1 m1 ðs þ iÞÞjds

ðjÞ cj ðs þ i; s þ iÞjxm ðv ðjÞ 1 m ðs þ iÞÞ  xm ðv 1 m1 ðs þ iÞÞjds 1

1

t

l Z X

i¼0

ðjÞ cj ðs þ i; s þ iÞjxm ðv ðjÞ 1 m ðs þ iÞÞ  xm1 ðv 1 m1 ðs þ iÞÞjds

t

l Z X iþ1

i¼0

þ

t

k Z X

i¼0 1 X

t

l Z X

i¼0

6

1

1

t

ðjÞ cj ðs þ i; s þ iÞjxm ðv ðjÞ 1 m1 ðs þ iÞÞ  xm1 ðv 1 m1 ðs þ iÞÞjds

ðpÞ 0 ckþp ðs þ i; s þ iÞjx0m ðuðpÞ 1 m ðs þ iÞÞ  xm ðu1 m1 ðs þ iÞÞjds

ðpÞ 0 ckþp ðs þ i; s þ iÞjx0m ðuðpÞ 1 m1 ðs þ iÞÞ  xm1 ðu1 m1 ðs þ iÞÞjds

kþl 1 k Z 1 X X kakBC 1 ðRþ Þ X ðjÞ 6 kakBC 1 ðRþ Þ qm Gj ðtÞ þ jA1 jiþ1 cj ðs þ i; s þ iÞjv ðjÞ 1 m ðs þ iÞ  v 1 m1 ðs þ iÞjds 1  d i¼0 j¼1 j¼1 t 1 l Z X X þ ~L jA1 jiþ1 p¼1

i¼0

t

1

ckþp ðs þ i; s þ iÞju1ðpÞm ðs þ iÞ  uðpÞ 1 m1 ðs þ iÞjds:

ð41Þ

From (6), (32) and hypothesis (40) we get that for each j 2 f1; . . . ; kg and every 1 6 s 6 mj ðjÞ

ðjÞ

ðjÞ

ð2Þ

ðjÞ

ðjÞ

jv ðjÞ s m ðtÞ  v s m1 ðtÞj ¼ juj s ðt; xm ðv sþ1 m ðtÞÞÞ  uj s ðt; xm1 ðv sþ1 m1 ðtÞÞÞj 6 kjs jxm ðv sþ1 m ðtÞÞ  xm1 ðv sþ1 m1 ðtÞÞj ð2Þ

ðjÞ

ðjÞ

ð2Þ

ðjÞ

ðjÞ

6 kjs jxm ðv sþ1 m ðtÞÞ  xm ðv sþ1 m1 ðtÞÞj þ kjs jxm ðv sþ1 m1 ðtÞÞ  xm1 ðv sþ1 m1 ðtÞÞj ! kakBC 1 ðRþ Þ ðjÞ ð2Þ ðjÞ m jv sþ1 m ðtÞ  v sþ1 m1 ðtÞj : 6 kjs kakBC 1 ðRþ Þ q þ 1d

ð42Þ

S. Stevic´ / Applied Mathematics and Computation 231 (2014) 478–488

486

ð2Þ

ð2Þ

From (42) and by using Lemma 1 with as ¼ kjs kakBC 1 ðRþ Þ qm and bs ¼ kjs kakBC 1 ðRþ Þ =ð1  dÞ, we have that for 1 6 s 6 mj

jv

ðjÞ 1 m ðtÞ

v

ðjÞ 1 m1 ðtÞj

6 kakBC 1 ðRþ Þ q

m

s1 kak 1 X BC ðRþ Þ

!j1 1

1d

j1 ¼1

j1 Y

ð2Þ kji

þ jv

ðjÞ s m ðtÞ

v

ðjÞ s m1 ðtÞj

kakBC 1 ðRþ Þ

i¼1

!s1

1d

s1 Y

ð2Þ

ð43Þ

kji :

i¼1

By choosing s ¼ mj in (43), applying (6) and (32) and hypothesis (40) we get that for each j 2 f1; . . . ; kg and every m 2 N mj 1

jv

ðjÞ 1 m ðtÞ

v

ðjÞ 1 m1 ðtÞj

6 kakBC 1 ðRþ Þ q

X kakBC 1 ðRþ Þ

m

1d

j1 ¼1

X kakBC 1 ðRþ Þ

6 kakBC 1 ðRþ Þ q

m

!j1 1

1d

j1 ¼1

ð2Þ kji

þ jv

ðjÞ mj m ðtÞ

v

ðjÞ mj m1 ðtÞj

kakBC 1 ðRþ Þ 1d

j1 Y

ð2Þ

ð2Þ

kji þ kjmj jxm ðtÞ  xm1 ðtÞj

!j1 1

1d

j1 Y

!mj 1 m 1 j Y ð2Þ k1i i¼1

!m 1 1 j kakBC 1 ðRþ Þ j mY

i¼1

mj X kakBC 1 ðRþ Þ j1 ¼1

j1 Y i¼1

mj 1

6 kakBC 1 ðRþ Þ qm

!j1 1

1d

ð2Þ

kji

i¼1

ð2Þ

ð44Þ

kji :

i¼1

Similarly to (44) is proved that for each i 2 f1; . . . ; lg and every m 2 N ðiÞ ju1 m ðtÞ



ðiÞ u1 m1 ðtÞj

6 kakBC 1 ðRþ Þ q

m

li X kakBC 1 ðRþ Þ j¼1

!j1

1d

j Y ð4Þ kij :

ð45Þ

i¼1

From (8), (41), (44) and (45), it follows that

0 1 !j j mj k 1 X X kakBC 1 ðRþ Þ 1 Y ð2Þ A @ jxmþ1 ðtÞ  xm ðtÞj 6 kakBC 1 ðRþ Þ q Gj ðtÞ 1 þ kji 1d j¼1 j1 ¼1 i¼1 0 1 !j1 li j l X X Y kakBC 1 ðRþ Þ ð4Þ m Gkþi ðtÞ@1 þ ~L kij A 6 kakBC 1 ðRþ Þ qmþ1 : þ kakBC 1 ðRþ Þ q 1  d j¼1 i¼1 i¼1 m

ð46Þ

From (4), (5), (27), (32), (40), (44) and (45), it follows that

jx0mþ1 ðtÞ  x0m ðtÞj 6

1 k X X ðjÞ ðjÞ jA1 jiþ1 cj ðt þ i; t þ iÞjxm ðv 1 m ðt þ iÞÞ  xm ðv 1 m1 ðt þ iÞÞj i¼0

j¼1

1 k X X ðjÞ ðjÞ þ jA1 jiþ1 cj ðt þ i; t þ iÞjxm ðv 1 m1 ðt þ iÞÞ  xm1 ðv 1 m1 ðt þ iÞÞj i¼0

j¼1

1 l X X ðpÞ ðpÞ þ jA1 jiþ1 ckþp ðt þ i; t þ iÞjx0m ðu1 m ðt þ iÞÞ  x0m ðu1 m1 ðt þ iÞÞj p¼1

i¼0

1 l X X ðpÞ ðpÞ þ jA1 jiþ1 ckþp ðt þ i; t þ iÞjx0m ðu1 m1 ðt þ iÞÞ  x0m1 ðu1 m1 ðt þ iÞÞj p¼1

i¼0

6 kakBC 1 ðRþ Þ q

m

0

k X

Cj ðtÞ@1 þ

j¼1

þ kakBC 1 ðRþ Þ q

m

l X

0

mj X kakBC 1 ðRþ Þ

1d

j1 ¼1

j1 Y

1 ð2Þ kji A

i¼1

li X

kakBC 1 ðRþ Þ

j¼1

1d

Ckþi ðtÞ@1 þ ~L

i¼1

!j 1

!j1

j Y

1 ð4Þ kij A

6 kakBC 1 ðRþ Þ qmþ1 :

ð47Þ

i¼1

From (38), (39), (46) and (47) and the induction we obtain that (40) hold for every m 2 N0 and for all t 2 Rþ . ð2Þ ð4Þ Now note that for sufficiently small kj1 , j ¼ 1; k; ki1 ; i ¼ 1; l,

0

d@1 þ

max

16j6k;16i6l

8 !j j mj <X 1 kakBC 1 ðRþ Þ 1 Y :j

1 ¼1

li X kakBC 1 ðRþ Þ ð2Þ kji ; ~L 1d i¼1 j¼1

1d

!j1

91 j = Y ð4Þ kij A < 1; ; i¼1

that is, q 2 ð0; 1Þ. This with (40) implies the uniform convergence of ðxm ðtÞÞm2N0 and ðx0m ðtÞÞm2N0 on Rþ . Taking the limit in (26), (27), (32) and (35) we get that

xðtÞ :¼ lim xm ðtÞ m!þ1

1

is a C solution of (25) on Rþ such that

jxðtÞj 6

kakBC 1 ðRþ Þ 1d

;

jx0 ðtÞj 6

kakBC 1 ðRþ Þ 1d

ð48Þ

S. Stevic´ / Applied Mathematics and Computation 231 (2014) 478–488

487

and

jx0 ðtÞ  x0 ðsÞj 6 ~Ljt  sj:

ð49Þ 1

Assume (25) has another BC ðRþ Þ solution, say y. Set

v^ jp ðtÞ ¼ ujp ðt; yðuj pþ1 ðt; . . . yðuj m ðt; yðtÞÞÞ . . .ÞÞÞ;

j ¼ 1; k

j

and

^ jp ðtÞ ¼ wjp ðt; yðwj pþ1 ðt; . . . yðwj m ðt; yðtÞÞÞ . . .ÞÞÞ; u j

j ¼ 1; l:

From (4), (5), (6) and (48), we have

jxðtÞ  yðtÞj 6

Z 1 X jA1 jiþ1

k X

t

i¼0



1

Z

1

t

cj ðs þ i; s þ iÞjxðv j1 ðs þ iÞÞ  xðv^ j1 ðs þ iÞÞjds þ

j¼1

1 X jA1 jiþ1 i¼0

Z 1 X cj ðs þ i; s þ iÞjxðv^ j1 ðs þ iÞÞ  yðv^ j1 ðs þ iÞÞjds þ jA1 jiþ1

k X j¼1

i¼0

^ p1 ðs þ iÞÞjÞds þ  x0 ð u

Z 1 X jA1 jiþ1

1

t

l X

ckþp ðs þ i; s þ iÞjx0 ðup1 ðs þ iÞÞ

p¼1

l X

ckþp ðs þ i; s þ iÞjx0 ðu^ p1 ðs þ iÞÞ  y0 ðu^ p1 ðs þ iÞÞjÞds

t

i¼0

1

p¼1

Z 1X kþl 1 k X kakBC 1 ðRþ Þ X Gj ðtÞ þ jA1 jiþ1 cj ðs þ i; s þ iÞjv j1 ðs þ iÞ  v^ j1 ðs þ iÞjds 1  d i¼0 t j¼1 j¼1 Z 1X 1 l X þ ~L jA1 jiþ1 ckþp ðs þ i; s þ iÞjup1 ðs þ iÞ  u^ p1 ðs þ iÞjds:

6 kx  ykC 1 ðRþ Þ

t

i¼0

ð50Þ

p¼1

Using Lemma 1, similar to (44), we obtain

jv j1 ðtÞ  v^ j1 ðtÞj 6 kx  ykC1 ðR

mj X kakBC 1 ðRþ Þ

þÞ

j1 ¼1

1d

li X kakBC 1 ðRþ Þ

!j1

1d

j¼1

j1 Y ð2Þ kji

ð51Þ

i¼1

and also

^ i1 ðtÞj 6 kx  ykC1 ðR Þ jui1 ðtÞ  u þ

!j1 1

j Y

ð4Þ

ð52Þ

kij :

i¼1

Using (51) and (52) into (50) and then applying condition (8) we get

0

0 11 !j j mj k 1 X X kakBC 1 ðRþ Þ 1 Y ð2Þ jxðtÞ  yðtÞj 6 kx  ykC 1 ðRþ Þ @ Gj ðtÞ@1 þ kji AA 1d j¼1 j1 ¼1 i¼1 0 1 !j1 li j l X X Y kakBC 1 ðRþ Þ ð4Þ A ~ @ Gkþi ðtÞ 1 þ L kij kx  ykC 1 ðRþ Þ þ 1d i¼1 i¼1 j¼1 6 qkx  ykC1 ðRþ Þ :

ð53Þ

From (4), (5), (6), (8), (49), (51) and (52), it follows that

jx0 ðtÞ  y0 ðtÞj 6

1 k 1 k X X X X jA1 jiþ1 cj ðt þ i; t þ iÞjxðv j1 ðt þ iÞÞ  xðv^ j1 ðt þ iÞÞj þ jA1 jiþ1 cj ðt þ i; t þ iÞjxðv^ j1 ðt þ iÞÞ i¼0

j¼1

i¼0

j¼1

1 l X X ^ p1 ðt þ iÞÞj  yðv^ j1 ðt þ iÞÞj þ jA1 jiþ1 ckþp ðt þ i; t þ iÞjx0 ðup1 ðt þ iÞÞ  x0 ðu i¼0

p¼1

1 l X X ^ p1 ðt þ iÞÞ  y0 ðu ^ p1 ðt þ iÞÞj jA1 jiþ1 ckþp ðt þ i; t þ iÞjx0 ðu þ p¼1 0 0 11 !j j mj k 1 X X kakBC 1 ðRþ Þ 1 Y ð2Þ kji AA 6 kx  ykC 1 ðRþ Þ @ Cj ðtÞ@1 þ 1d j1 ¼1 i¼1 j¼1 0 1 !j1 li j l X X Y kakBC 1 ðRþ Þ ð4Þ A ~ @ 6 qkx  ykC1 ðRþ Þ : þ kx  ykC1 ðRþ Þ Ckþi ðtÞ 1 þ L kij 1d i¼1 j¼1 i¼1 i¼0

Thus kx  ykC 1 ðRþ Þ 6 qkx  ykC 1 ðRþ Þ , which with q 2 ð0; 1Þ implies xðtÞ ¼ yðtÞ. h

ð54Þ

S. Stevic´ / Applied Mathematics and Computation 231 (2014) 478–488

488

References [1] R. Bellman, K. Cooke, Differential-Difference Equations, Acad. Press, New York, 1963. [2] K. Berenhaut, J. Foley, S. Stevic´, The global attractivity of the rational difference equation yn ¼ 1 þ ðynk =ynm Þ, Proc. Am. Math. Soc. 135 (2007) 1133– 1140. [3] N.I. Blashchak, G.P. Pelyukh, On the existence and uniqueness of periodic solutions of systems of nonlinear differential-functional equations with linear deviation of an argument, Dopov. Nats. Akad. Nauk Ukr. 8 (1997) 10–13. [4] M.A. Cruz, J.K. Hale, Existence, uniqueness, and continuous dependence for hereditary system, Ann. Mat. Pura Appl. 85 (4) (1970) 63–82. [5] B.P. Demidovich, Lectures on the Mathematical Theory of Stability, Nauka, Moscow, 1970. [6] J. Diblik, Asymptotic behaviour of solutions of a differential equation partly solved with respect to its derivative, Sib. Math. J. 23 (5) (1982) 80–91. [7] J. Diblik, Solutions of a singular system of differential equations which is not solved with respect to the derivatives, Demonstratio Math. 17 (4) (1984) 1031–1041 (in Russian). [8] J. Diblik, On conditional stability of the solutions of the systems of differential equations, not solved with respect to the derivatives, Sb.VUT 1–4 (1985) 5–9. [9] J. Diblik, The existence of solution of the singular Cauchy problem for systems of differential equations that are not solved for the derivatives, Publ. Inst. Math. 37 (51) (1985) 73–80. [10] J. Diblik, Functional Differential Equations, University of Zˇilina, 2008. [11] J. Diblik, Z. Svoboda, Z. Šmarda, Retract principle for neutral functional differential equations, Nonlinear Anal. 71 (2009) 1393–1400. [12] R.D. Driver, Existence and continuous dependence of solutions of a neutral functional-differential equation, Arch. Rat. Mech. Anal. 19 (2) (1965) 149– 166. [13] L.J. Grimm, Existence and continuous dependence for a class of nonlinear neutral-differential equation, Proc. Am. Math. Soc. 29 (3) (1971) 467–473. [14] J. Hale, Theory of Functional Differential Equations, Springer, Berlin, 1977. [15] B. Iricˇanin, S. Stevic´, Some systems of nonlinear difference equations of higher order with periodic solutions, Dyn. Contin. Discrete Impuls. Syst. 13a (3– 4) (2006) 499–508. [16] M. Kwapisz, On the existence and uniqueness of solutions of certain integral-functional equation, Ann. Pol. Math. 31 (1) (1975) 23–41. [17] O.P. Oliinychenko, Asymptotic properties of solutions of linear functional differential equations, Nelin. Kolyv. 3 (4) (2000) 489–496. [18] G.P. Pelyukh, On a representation of solutions of nonlinear differential-functional equations in the neighborhood of singular points, Differ. Uravn. 22 (9) (1986) 1628–1630. [19] G.P. Pelyukh, On the structure of the set of solutions for one class of systems of nonlinear differential-functional equations of neutral type, Nonlinear Oscil. 5 (1) (2002) 53–59. [20] G.P. Pelyukh, Asymptotic properties of solutions to systems of nonlinear functional-differential equations, Differ. Uravn. 39 (1) (2003) 46–50. [21] H.P. Pelyukh, O.P. Oliinychenko, Asymptotic properties of global solutions of systems of functional differential equations of neutral type with nonlinear deviations of an argument, Nonlinear Oscil. 5 (4) (2002) 489–503. [22] H.P. Pelyukh, A.V. Vel’hach, On the structure of the set of continuously differentiable solutions of one boundary-value problem for a system of functional differential equations of neutral type, Nonlinear Oscil. 10 (2) (2007) 278–291. [23] A.M. Samoilenko, G.P. Pelyukh, Solutions of systems of nonlinear functional differential equations bounded on the entire real axis and their properties, Ukr. Mat. Zh. 46 (6) (1994) 737–747. [24] Yu.D. Shlapak, On periodic solutions of nonlinear second order differential equations, not solved with respect to the highest derivative, Ukr. Math. J. 26 (6) (1974) 850–854. [25] S. Stevic´, On stability results for a new approximating fixed points iteration process, Demonstratio Math. 34 (4) (2001) 873–880. [26] S. Stevic´, A global convergence results with applications to periodic solutions, Indian J. Pure Appl. Math. 33 (1) (2002) 45–53. Q Q2ðkþ1Þ [27] S. Stevic´, On the recursive sequence xnþ1 ¼ A= ki¼0 xni þ 1= j¼kþ2 xnj , Taiwanese J. Math. 7 (2) (2003) 249–259. [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49]

S. Stevic´, On the recursive sequence xnþ1 ¼ an þ ðxn1 =xn Þ II, Dyn. Contin. Discrete Impuls. Syst. 10a (6) (2003) 911–917. S. Stevic´, Stability results for /-strongly pseudocontractive mappings, Yokohama Math. J. 50 (2003) 71–85. S. Stevic´, Approximating fixed points of strongly pseudocontractive mappings by a new iteration method, Appl. Anal. 84 (1) (2005) 89–102. S. Stevic´, Approximating fixed points of nonexpansive mappings by a new iteration method, Bull. Inst. Math. Acad. Sin. 1 (3) (2006) 437–450. S. Stevic´, On the recursive sequence xnþ1 ¼ maxfc; xpn =xpn1 g, Appl. Math. Lett. 21 (8) (2008) 791–796. S. Stevic´, Boundedness character of a class of difference equations, Nonlinear Anal. TMA 70 (2009) 839–848. S. Stevic´, Global stability of a difference equation with maximum, Appl. Math. Comput. 210 (2009) 525–529. S. Stevic´, Periodicity of max difference equations, Util. Math. 83 (2010) 69–71. S. Stevic´, On a nonlinear generalized max-type difference equation, J. Math. Anal. Appl. 376 (2011) 317–328. S. Stevic´, On some solvable systems of difference equations, Appl. Math. Comput. 218 (2012) 5010–5018. S. Stevic´, Bounded solutions of some systems of nonlinear functional differential equations with iterated deviating argument, Appl. Math. Comput. 218 (2012) 10429–10434. S. Stevic´, Existence of bounded solutions of some systems of nonlinear functional differential equations with complicated deviating argument, Appl. Math. Comput. 218 (2012) 9974–9979. S. Stevic´, Globally bounded solutions of a system of nonlinear functional differential equations with iterated deviating argument, Appl. Math. Comput. 219 (2012) 2180–2185. S. Stevic´, Local existence of Lipschitz-continuous solutions of systems of nonlinear functional equations with iterated deviations, Appl. Math. Comput. 218 (2012) 10542–10547. S. Stevic´, On a third-order system of difference equations, Appl. Math. Comput. 218 (2012) 7649–7654. S. Stevic´, On continuous solutions of a class of systems of nonlinear functional difference equations with deviating argument, Appl. Math. Comput. 218 (2012) 10188–10193. S. Stevic´, On solutions of a class of systems of nonlinear functional differential equations of neutral type with complicated deviations of an argument, Appl. Math. Comput. 219 (2012) 3693–3700. S. Stevic´, Unique existence of bounded continuous solutions on the real line of a class of nonlinear functional equations with complicated deviations, Appl. Math. Comput. 218 (2012) 7813–7817. S. Stevic´, Existence of solutions bounded together with their first derivatives of some systems of nonlinear functional differential equations, Appl. Math. Comput. 219 (2013) 6457–6465. S. Stevic´, On bounded continuously differentiable solutions with Lipschitz first derivatives of a system of functional differential equations, Appl. Math. Comput. 219 (2013) 6344–6353. A.V. Vel’hach, Asymptotic properties of solutions of systems of nonlinear functional differential equations of neutral type, Nonlinear Oscil. 12 (1) (2009) 19–26. L.A. Zhivotovskii, On the existence and uniqueness of solutions of differential equations with delay dependent on a solution and its derivative, Differ. Uravn. 5 (5) (1969) 880–889.