Expectation-Maximization Bernoulli-Gaussian Approximate Message ...

Report 8 Downloads 32 Views
Expectation-Maximization Bernoulli-Gaussian Approximate Message Passing Asilomar 2011 Jeremy Vila and Philip Schniter The Ohio State University Department of Electrical and Computer Engineering [email protected] and [email protected]

November 8th, 2011

This work has been supported in part by NSF-I/UCRC grant IIP-0968910, by NSF grant CCF-1018368, and by DARPA/ONR grant N66001-10-1-4090.

CS Problem Statement Recover a signal from undersampled measurements x ∈ RN

y = Ax + w

y, w ∈ RM

M 0.65! Jeremy Vila and Philip Schniter (OSU)

EM-BG-AMP

November 8th, 2011

11 / 19

Noisy Signal Recovery We now compare EM-BG-GAMP to state-of-the-art CS algorithms for noisy signal recovery using normalized MSE. For BG signals, fix N = 1000, K = 100, SNR = 25dB and vary M. genie Lasso

The other “Bayesian” approaches, BCS and SBL, exhibit the next best performance.

SL0 T-MSBL BCS EM-BG-GAMP

−5

NMSE [dB]

EM-BG-GAMP outperforms the other algorithms for all meaningful M/N.

−10 −15 −20 −25 0.2

0.25

0.3

0.35

0.4

0.45

0.5

M/N Noisy Bernoulli-Gaussian recovery NMSE.

Jeremy Vila and Philip Schniter (OSU)

EM-BG-AMP

November 8th, 2011

12 / 19

Noisy Signal Recovery (cont.) We also see excellent NMSE for other K -sparse distributions: 0

genie Lasso SL0 T-MSBL BCS EM-BG-GAMP

−5

−5

NMSE [dB]

NMSE [dB]

0

−10 −15 genie Lasso

−20

SL0

−10 −15 −20 −25

T-MSBL

−25

−30

BCS EM-BG-GAMP

−30 0.2

0.25

0.3

0.35

0.4

0.45

0.5

−35 0.2

M/N

0.25

0.3

0.35

0.4

0.45

0.5

M/N

Noisy Bernoulli-Rademacher recovery NMSE.

Noisy Bernoulli recovery NMSE.

For Bernoulli signals especially, EM-BG-GAMP exhibits a huge improvement over the other algorithms.

Jeremy Vila and Philip Schniter (OSU)

EM-BG-AMP

November 8th, 2011

13 / 19

Algorithm Complexity We now compare algorithm complexity. Fix M = 0.5N, K = 0.1N, SNR = 25dB, and vary N. Results averaged over 50 iterations. 2

−20

NMSE [dB]

Runtime [sec]

10

1

10

T-MSBL BCS SL0

0

10

EM-BG-GAMP

T-MSBL BCS SL0 EM-BG-GAMP SPGL1 SPGL1 fft EM-BG-GAMP fft

−25

−30

SPGL1 SPGL1 fft EM-BG-GAMP fft −1

10

3

10

4

5

10

10

6

10

−35 3 10

Noisy Bernoulli-Rademacher recovery time.

4

5

10

10

6

10

N

N

Noisy Bernoulli-Rademacher recovery NMSE.

For large N, EM-BG-AMP has state-of-the-art complexity. Jeremy Vila and Philip Schniter (OSU)

EM-BG-AMP

November 8th, 2011

14 / 19

EM-BG-GAMP Limitations EM-BG-GAMP is outperformed by genie-LASSO and SL0 with a non-compressible Student’s-t signal. genie Lasso

NMSE [dB]

−5

SL0 T-MSBL BCS EM-BG-GAMP

−6 −7 −8 −9 −10 0.3

0.35

0.4

0.45

0.5

0.55

0.6

M/N Noisy Student’s-t recovery NMSE.

Interestingly, the algorithms that performed best for sparse signals performed the worse for the Student’s-t. Jeremy Vila and Philip Schniter (OSU)

EM-BG-AMP

November 8th, 2011

15 / 19

Conclusions We proposed an extension of BG-AMP wherein the signal and noise distributional parameters were automatically learned via the EM algorithm. Advantages of EM-BG-AMP State-of-the-art NMSE performance for a wide class of signal/matrix types. State-of-the-art complexity scaling as problem dimensions get large. No tuning parameters.

Limitations of EM-BG-AMP If the true signal/noise pdfs cannot be well matched by BG/Gaussian priors, then performance may suffer.

To address this limitation, we are working on a Gaussian-Mixture version (EM-GM-AMP) with automatic selection of the mixture order. Jeremy Vila and Philip Schniter (OSU)

EM-BG-AMP

November 8th, 2011

16 / 19

EM-GM-GAMP Teaser Our new EM-GM-GAMP algorithm may alleviate the shortcomings seen in recovering a non-compressible Student’s-t signal. EM-GM-GAMP genie Lasso

NMSE [dB]

−5

SL0 T-MSBL BCS EM-BG-GAMP

−6 −7 −8 −9 −10 0.2

0.25

0.3

0.35

0.4

0.45

0.5

M/N Noisy Student’s-t recovery NMSE.

Details coming soon. Jeremy Vila and Philip Schniter (OSU)

EM-BG-AMP

November 8th, 2011

17 / 19

Matlab code is publicly available at http://ece.osu.edu/~vilaj/EMBGAMP/EMBGAMP.html

Thanks!

Jeremy Vila and Philip Schniter (OSU)

EM-BG-AMP

November 8th, 2011

18 / 19

Explicit Results GAMP outputs: xˆ

=

π(ˆ r , ν r ; q) γ(ˆ r , ν r ; q)

νx

=

 2 π(ˆ r , ν r ; q) β(ˆ r , ν r ; q) + |γ(ˆ r , ν r ; q)|2 − π(ˆ r , ν r ; q) |γ(ˆ r , ν r ; q)|2 ,

where p(s = 1|y ) , π(ˆ r , ν r ; q) ,

1 1+

r ;θ,φ+ν r ) −1 λ N (ˆ 1−λ N (ˆ r ;0,ν r )

ˆ r /ν r + θ/φ 1/ν r + 1/φ 1 var(x|y , s = 1) , β(ˆ r , ν r ; q) , . 1/ν r + 1/φ E [x|y , s = 1] , γ(ˆ r , ν r ; q) ,

EM updates: λi+1 =

φi+1 =

N 1 X π(ˆ rn , νnr ; qi ). N n=1

1 λi+1 N

N X n=1

Jeremy Vila and Philip Schniter (OSU)

θ i+1 =

1 λi+1 N

N X

π(ˆ rn , νnr ; qi )γ(ˆ rn , νnr ; qi )

n=1

  2 π(ˆ rn , νnr , qi ) θ i − γ(ˆ rn , νnr ; qi ) + β(ˆ rn , νnr ; qi ) EM-BG-AMP

November 8th, 2011

19 / 19