Fingerprint Kalman Filter in Indoor Positioning ... - Semantic Scholar

Report 3 Downloads 48 Views
TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y

AP Signal strength Glass door

Mathematics

——–

Fingerprint Kalman Filter in Indoor Positioning Applications MSC 2009 Simo Ali-Löytty, Tommi Perälä, Ville Honkavirta and Robert Piché http://math.tut.fi/posgroup/ ¨ Simo Ali-Loytty – p.1/21

Outline Radio map (offline phase) State of the art methods Weighted K-Nearest Neighbor Position Kalman Filter Fingerprint Kalman Filter Test results Conclusions

¨ Simo Ali-Loytty – p.2/21

Calibration point

TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y

67 m

Mathematics

——–

Radio map

¨ Simo Ali-Loytty – p.3/21

The radio map is M = {Mi }, where Mi = (Bi , Ri )

Cell

Center

Bi

pi

¨ Simo Ali-Loytty – p.4/21

The radio map is M = {Mi }, where Mi = (Bi , Ri ) Ri,1. AP (WLAN access point)

0.12

Cell

Bi 0

-92

pi

-67

Ri,2. AP

0.16

Center

a ¯i,1. AP

Relative frequency

0

-91

RSSI

a ¯i,2. AP

-74

¨ Simo Ali-Loytty – p.4/21

The stem plot of the means of histograms AP Signal strength Glass door

¨ Simo Ali-Loytty – p.5/21

TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y Mathematics

——–

State of the art methods

¨ Simo Ali-Loytty – p.6/21

Weighted K-Nearest Neighbor Cell

xˆWKNN =

M X i=1

wi PM

j=1

wj

Bi

pi, Center

pi

where pi is center of cell Bi and nonnegative weights wi are based on radio map.

¨ Simo Ali-Loytty – p.7/21

Measured histograms are not smooth 0.12 RSSI histogram

Probability

Problem

0 -90

RSSI

-65 ¨ Simo Ali-Loytty – p.8/21

We use histogram kernel approximation 0.12 RSSI histogram Exponential kernel, width=2

Probability

0 -90

RSSI

-65 ¨ Simo Ali-Loytty – p.9/21

Example: When y = −82.5 then wi ≈ 0.036 0.12 RSSI histogram Exponential kernel, width=2

Probability

wi ≈ 0.036

0 -90

y = −82.5

RSSI

-65 ¨ Simo Ali-Loytty – p.10/21

Special case of WKNN: Nearest Neighbor (NN)

xˆNN = pi,

where i

= argmaxi (wi ).

In our case best results produce weights [1]

1 , wi = ky − a¯i k1 where y is measurement vector and mean values of histograms are in vector a ¯i. [1] Ville Honkavirta, Tommi Perälä, Simo Ali-Löytty, and Robert Piché. A comparative survey of WLAN location fingerprinting methods. In Proceedings of the 6th Workshop on Positioning, Navigation and Communication 2009 (WPNC’09), pages 243-251, March 2009. ¨ Simo Ali-Loytty – p.11/21

Filtering approach: Kalman Filter Initial state: Motion model: Meas. model:

Prior:

− xˆk − Pk

x0 , E(x0) = xˆ0, V(x0) = P0 xk+1 = Fk xk + wk , V(wk ) = Qk yk = Hk xk + vk , V(vk ) = Rk = Fk−1xˆk−1 T = Fk−1Pk−1Fk−1 + Qk−1

Posterior: x ˆk = xˆ−k + Kk (yk − Hk xˆk )

Pk = Kk =

− (I − Kk Hk )Pk P−k HTk (Hk P−k HTk

+ Rk )−1 ¨ Simo Ali-Loytty – p.12/21

Position Kalman Filter (PKF)

PKF uses the static solutions as a measurement: PKFWKNN : y = x ˆWKNN PKFNN : y = x ˆNN We use stationary state model:

Fk = I and Hk = I

¨ Simo Ali-Loytty – p.13/21

TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y Mathematics

——–

Fingerprint Kalman Filter (FKF)

¨ Simo Ali-Loytty – p.14/21

Comparison between PKF and FKF problems

PKF: Initial state: x0 , E(x0 ) = xˆ0 , V(x0 ) = P0 Motion model: xk+1 = Fk xk + wk , V(wk ) = Qk Meas. model: y k = H k xk + v k , V(vk ) = Rk

FKF: Initial state:

x0 ,

E(x0 ) = xˆ0 , V(x0 ) = P0

Motion model: xk+1 = Fk xk + wk , Meas. model:

V(wk ) = Qk

yk = hk (xk , vk ),

where hk (xk , vk ) is known only in the calibration points pi ! ¨ Simo Ali-Loytty – p.15/21

FKF is based on recursive use of BLUE

Let 

E 

x y





 = 

x˜ y˜





 and V 

x y





 = 

Pxx Pxy Pyx Pyy

 

BLUE (Best Linear Unbiased Estimator)

ˆ = x˜ + Pxy P−1 ˜) x yy (y − y   T −1 ˆ ) (x − x ˆ ) = Pxx − Pxy Pyy Pyx E (x − x

¨ Simo Ali-Loytty – p.16/21

FKF algorithm − xˆk P−k

Prior:

= Fk−1xˆk−1 = Fk−1Pk−1FTk−1 + Qk−1

ˆk ) Posterior: x ˆk = xˆ−k + Pxyk P−1 yy k (yk − y T P Pk = Pxxk − Pxyk P−1 yy k xy k ,

where yˆk =

P

i

βi,k a¯i ,

Pxxk = Pxyk = Pyyk =

X

i X

i X i

pˆk =

P

i

βi,k pi ≈

xˆ− k,

βi,k ≈ P

βi,k Ppi + (pi − pˆk )(pi − pˆk )

T



,

T



.

x− k

∈ Ai



βi,k (pi − pˆk )(¯ ai − yˆk )T and βi,k Pai + (¯ ai − yˆk )(¯ ai − yˆk )

¨ Simo Ali-Loytty – p.17/21

TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y Mathematics

——–

Test results

¨ Simo Ali-Loytty – p.18/21

One route example True FKF PKFWKNN

30 m End

Start

Cells

¨ Simo Ali-Loytty – p.19/21

Results from 4 routes

NN WKNN PKFNN PKFWKNN FKF

ME RMSE 95% Max (m) (m) (m) (m) 7.7 14.3 21.6 127.4 5.9 9.8 13.7 105.9 6.9 11.8 18.4 110.3 4.7 5.8 10.1 36.5 4.7 5.8 11.1 27.2

¨ Simo Ali-Loytty – p.20/21

Results from 4 routes

NN WKNN PKFNN PKFWKNN FKF

ME RMSE 95% Max (m) (m) (m) (m) 7.7 14.3 21.6 127.4 5.9 9.8 13.7 105.9 6.9 11.8 18.4 110.3 4.7 5.8 10.1 36.5 4.7 5.8 11.1 27.2

Note: WKNN and PKFWKNN have significantly greater computational and memory requirements than NN, PKFNN or FKF. ¨ Simo Ali-Loytty – p.20/21

Conclusions FKF outperformed PKFNN and the static estimators

¨ Simo Ali-Loytty – p.21/21

Conclusions FKF outperformed PKFNN and the static estimators FKF and PKFWKNN have similar performance

¨ Simo Ali-Loytty – p.21/21

Conclusions FKF outperformed PKFNN and the static estimators FKF and PKFWKNN have similar performance FKF has much lower computational and memory requirements than PKFWKNN

¨ Simo Ali-Loytty – p.21/21

Conclusions FKF outperformed PKFNN and the static estimators FKF and PKFWKNN have similar performance FKF has much lower computational and memory requirements than PKFWKNN True FKF PKFWKNN

http://math.tut.fi/posgroup/ 30 m End

Start

Cells

¨ Simo Ali-Loytty – p.21/21