Formulae for further electrical and electronic principles AWS

Report 2 Downloads 35 Views
Copyrighted material - Taylor & Francis

Formulae for further electrical and electronic principles

A.c. theory

 I=

or

f =

1 T

1 fr = 2π

i 12 + i 22 + i 22 + · · · + i n2 n 2 Im or 0.637 Im π

For a sine wave: IAV = 1 I = √ Im or 0.707 Im 2 r.m.s. Form factor = average

maximum Peak factor = r.m.s.

General sinusoidal voltage: v = Vm sin (ωt ± φ)



1 R2 − 2 LC L

Ir =

VRC L RD = L CR

Q=

2π f r L IC = R Ir

P = VIcos φ or I 2 R

S = VI

power factor = cos φ =

R Z

Filter networks Low-pass T or π: 

Single-phase circuits X L = 2πf L

XC =

1 2πf C

1 fC = √ π LC

R0 =

L C

1 π R0 f C

L=

R0 π fC

C=

V  Z = = (R 2 + X 2 ) I

See Fig. F1. Series resonance: f r =

1 √

High-pass T or π:

2π LC

Q=

VL VC 2πf r L 1 1 or = = = V V R 2πf r CR R

Q=

fr fr or ( f 2 − f 1 ) = f2 − f 1 Q



L C

fC = C=



1 √

 LC

1 4π R0 f C

See Fig. F2.

R0 =

L C

L=

R0 4π f C

Q = VIsin φ

Section 2

1 f

T=

Parallel resonance (LR–C circuit):

Copyrighted material - Taylor & Francis

320 Electrical and Electronic Principles and Technology L 2

L

L 2

R0

R0

C

R0

C 2

R0

C 2

Figure F1

2C

2C

Section 2

R0

L

C

R0

R0

2L

2L

(a)

R0

(b)

Figure F2

D.c. transients

Operational amplifiers 

C–R circuit τ = C R Charging: v C = V (1 − e−t /CR ) v r = Ve−t /CR

Inverter: A =

i = Ie−t /CR Discharging: v C = v R = Ve−t /CR i = I e−t /CR L–R circuit τ =

CMRR = 20 log10

L R

Current growth: v L = Ve−Rt/L

 differential voltage gain dB common-mode gain

−Rf Vo = Vi Ri

Vo Rf =1+ Vi Ri   V1 V2 V3 Summing: Vo = −Rf + + R1 R2 R3 Non-inverter: A =

Integrator: Vo = −

1 CR

 Vi dt

Differential:

v R = V (1 − e−Rt/L )

  Rf If V1 > V2 : Vo = (V1 − V2 ) − R1

i = I (1 − e−Rt/L ) Current decay: v L = v R = Ve−Rt/L i = Ie−Rt/L

 If V2 > V1 : Vo = (V2 − V1 )

These formulae are available for downloading at the website: www.routledge.com/cw/bird

R3 R2 + R3

  Rf 1+ R1