Fourier Codes

Report 3 Downloads 64 Views
Fourier Codes R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS

July 2009

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Introduction

Fourier Codes

Summary

1 Introduction

Fourier Number Theoretic Transform - FNTT Eigensequences of the FNTT 2 Fourier Codes

Code Construction The Code Parameters

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Introduction

Fourier Codes

Summary

3 Error Control based on the FNTT Eigenstructure

Single Error Correction Double Error Correction

4 Final Remarks

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Introduction

Fourier Codes

Fourier Number Theoretic Transform - FNTT

Introduction Fourier Number Theoretic Transform - FNTT The GF (p)-valued sequences x = (x0 , x1 , . . . , xN −1 ) and X = (X0 , X1 , . . . , XN −1 ), form an unitary FNTT pair when N −1 X √ Xk = ( N )−1 (modp) xn αkn n=0

and

N −1 X √ xn = ( N )−1 (modp) Xk α−kn k =0

where α ∈ GF (p) has multiplicative order N and N

p−1 2

≡ 1(mod p) .

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Introduction

Fourier Codes

Eigensequences of the FNTT

Introduction

Eigensequences of the FNTT A sequence x is said to be an eigensequence of the FNTT, with associated eigenvalue λ ∈ GF (p 2 ), when it satisfies X = λx . The eigenvalues of the FNTT are the fourth roots of unity (±1, ±j ), where j 2 ≡ −1(mod p).

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Introduction

Fourier Codes

Eigensequences of the FNTT

Introduction

Eigensequences of the FNTT Lemma 1: If x is an FNTT eigensequence, then it has even symmetry (i.e. xi = xN −i ) if λ ≡ ±1(mod p) and odd symmetry

(i.e. xi = −xN −i ) if λ ≡ ±j (mod p).

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Introduction

Fourier Codes

Code Construction

Fourier Codes

FNTT Matrix 

   √ −1  F = ( N ) (modp)    

1

1

1

...

1

1 1 .. . 1

α α2 .. .

α2 α4 .. .

... ... .. .

αN −1 α2(N −1) .. .

αN −1

α2(N −1)

. . . α(N −1)(N −1)

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

        

Introduction

Fourier Codes

Code Construction

Fourier Codes

Code Construction If x is an eigensequence of the linear transform F , then Fx = λx . ⇒ (F − λI )x = 0 ⇒ H ∗ = (F − λI )

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Introduction

Fourier Codes

Code Construction

Fourier Codes Example: Constructing linear block codes from the FNTT of length N = 5, over GF (41). Consider α = 10, an element of order 5 in the √ given field, 5 ≡ 13(mod 41) and j ≡ 9(mod 41). From the transform

matrix F one obtains 

19 − λ 19 19   19 26 − λ 14  F − λI =  19 14 6 −λ   17 26  19 19

6

17

19 17

19 6

26 6−λ

17 14

14

26 − λ

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

       

Introduction

Fourier Codes

Code Construction

Fourier Codes Considering H = [IN −k |Pλ ] and G = [−PλT |Ik ], we have the following

codes

F (5, 2)

F (5, 1)

H

H

+1

−1



1



0 0

34 34

 = 0 0

1 0 0 1

 0 40  ; G +1 = 40 0



1

0 0

0 12

  0 =  0  0

1 0 0 1

 h 0 40   ; G −1 = 29 1 0 40   1 40

0 0

"

7 0 7 1



R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

1 1 0 0

1

0 1

1 1

#

i

Introduction

Fourier Codes

Code Construction

Fourier Codes

F (5, 1)

F (5, 1)

H +j

H −j



1   0 =  0  0 

0 0 1 0 0 1 0 0

1 0   0 1 =  0 0  0 0

0 0 1 0

 0  h 1   ; G +j = 0  0 31  1 10 0 0

 0  h 1   ; G −j = 0 40  0 37  1 4 0 0

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

i

40 10 31 1

4 37 1

i

Introduction

Fourier Codes

The Code Parameters

The Code Parameters Code block length n: order N of the FNTT matrix; Dimension k : Multiplicity of the associated eigenvalue λ; N

Mult of 1

Mult of -1

Mult of -j

Mult of +j

4m 4m+1

m+1 m+1

m m

m m

m-1 m

4m+2 4m+3

m+1 m+1

m+1 m+1

m m+1

m m

The multiplicity of λ depends on the value of

√ N (modp).

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Introduction

Fourier Codes

The Code Parameters

The Code Parameters Proposition 1: Let H λ = [In−k |P] be the parity-check matrix of an F λ (n, k , d ) Fourier Code over GF (p). Then the submatrix P contains a secondary diagonal matrix Ds , of order k , with entries m, where m = p − 1 if λ = ±1(modp) and m = 1 if λ = ±j (modp). for λ = ±1, m = p − 1

for λ = ±j , m = 1

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Introduction

Fourier Codes

The Code Parameters

The Code Parameters The Minimum Distance Proposition 2 (An upper bound on the minimum distance): The minimum distance of a Fourier code F λ (n, k , d ) satisfies d ≤ n − 2k + 2.

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Introduction

The Code Parameters

The Code Parameters The Minimum Distance Corollary: For F λ (n, k , d ), with λ = ±j , the code minimum distance satisfies d ≤ n − 2k .

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Fourier Codes

Introduction

Fourier Codes

The Code Parameters

Parameters of some Fourier codes N

k +1

d +1

k −1

d −1

k +j

d +j

k −j

d −j

3

1

3

1

3

-

-

1

2

4 5

2 2

2 3

1 1

4 5

1

4

1 1

2 4

6 7

2 2

4 5

2 2

4 5

1 1

4 6

1 2

4 4

8 9

3 3

4 3

2 2

4 6

1 2

6 6

2 2

4 6

10 11

3 3

6 7

3 3

6 7

2 2

6 8

2 3

6 6

12

4

4

3

6

3

4

2

6

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Error Control based on the FNTT Eigenstructure

Final Remarks

Error Control based on the FNTT Eigenstructure

Syndrome Computation

S = Fr − λI r = x + e is the received sequence S is zero if, and only if, r is a codeword

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Error Control based on the FNTT Eigenstructure

Single Error Correction

Single Error Correction - The symmetric case r = (r0 , r1 , r2 , ri , . . . , rN −i . . . , rN −1 ) According to Definition 1, if N is odd, r0 must satisfy √ r0 = (λ N − 1)−1 (r1 + r2 + . . . + rN −1 ) r = (r0 , r1 , r2 , ri , . . . , rN /2 , . . . , rN −i . . . , rN −1 ) If N is even, the possible error occurred at position r0 or rN /2 . √ rN /2 = r0 (λ N − 1)(r1 + . . . + rN /2−1 + rN /2+1 + . . . + rN −1 ) R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Final Remarks

Error Control based on the FNTT Eigenstructure

Final Remarks

Double Error Correction

Double Error Correction - The nonsymmetric case

3 possible options: 1

Errors in symbols r0 and ri , i 6= 0

2

Errors ri and rN −i

3

Error in ri , i 6= 0 and in rj , j 6= N − i

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Error Control based on the FNTT Eigenstructure

Final Remarks

Double Error Correction

Decoding algorithms for double errors

Decoding algorithm 2: r = (r0 , r1 , r2 , ri , . . . , rN −i . . . , rN −1 ) √ PN −1 Make ri = 12 (λ N r0 − j =0

j 6=i,N −i

rj ) and rN −i = ri ;

If the sequence is an eigensequence, decoding is complete. Otherwise, more than two errors have occurred.

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Error Control based on the FNTT Eigenstructure

Final Remarks

Double Error Correction

Decoding algorithm 2 - Example 1 Consider the double-error correcting code F 1 (7, 2, 5) over GF (19), with √ α = 7, 7 ≡ 6(mod 29), generator matrix G=

"

16 20

0 1

1 0

10 20

10 20

1 0

0 1

#

,

and received sequence r = (16, 2, 1, 10, 10, 1, 3). √ PN −1 ri = 12 (λ N r0 − j =0

j 6=i,N −i

rj ) =⇒ r (1) = (16, 0, 1, 10, 10, 1, 0) and

R (1) = (16, 0, 1, 10, 10, 1, 0). =⇒ Decoding is complete!

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Error Control based on the FNTT Eigenstructure

Final Remarks

Final Remarks

We have introduced a new family of nonbinary linear block codes, the Fourier codes. The codewords of a Fourier code F λ (n, k , d ) are the eigensequences of the Fourier number theoretic transform, associated with a given eigenvalue λ.

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes

Error Control based on the FNTT Eigenstructure

Final Remarks

Final Remarks

Strategies for single and double error control based on the FNTT eigenstructure were examined. The approach described can be extended to other families of finite field transforms The restrictions on the code parameters can be removed if arbitrary linear transforms are considered.

R. M. Campello de Souza E. S. V. Freire H. M. de Oliveira Federal University of Pernambuco - UFPE Department of Electronic and Systems - DES Signal Processing Group - GPS Fourier Codes