FOURIER EXPANSIONS AND INTEGRAL ... - Semantic Scholar

Report 2 Downloads 94 Views
MATHEMATICS OF COMPUTATION Volume 78, Number 268, October 2009, Pages 2193–2208 S 0025-5718(09)02230-3 Article electronically published on June 12, 2009

FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS FOR THE APOSTOL-BERNOULLI AND APOSTOL-EULER POLYNOMIALS QIU-MING LUO Abstract. We investigate Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials using the Lipschitz summation formula and obtain their integral representations. We give some explicit formulas at rational arguments for these polynomials in terms of the Hurwitz zeta function. We also derive the integral representations for the classical Bernoulli and Euler polynomials and related known results.

1. Introduction The classical Bernoulli polynomials and Euler polynomials are defined by means of the following generating functions (see [1, pp. 804-806] or [18, pp. 25-32]) (1.1)

∞ βˆ‘ 𝑧𝑒π‘₯𝑧 𝑧𝑛 = 𝐡 (π‘₯) 𝑛 𝑒𝑧 βˆ’ 1 𝑛=0 𝑛!

(βˆ£π‘§βˆ£ < 2πœ‹)

∞ βˆ‘ 2𝑒π‘₯𝑧 𝑧𝑛 = 𝐸 (π‘₯) 𝑛 𝑒𝑧 + 1 𝑛=0 𝑛!

(βˆ£π‘§βˆ£ < πœ‹),

and (1.2)

( ) respectively. Obviously, 𝐡𝑛 := 𝐡𝑛 (0), 𝐸𝑛 := 2𝑛 𝐸𝑛 12 are the Bernoulli numbers and Euler numbers respectively. Some interesting analogues of the classical Bernoulli polynomials and numbers were first investigated by Apostol [2, p. 165, Eq. (3.1)] and (more recently) by Srivastava [20, pp. 83-84]. We begin by recalling here Apostol’s definitions as follows: Received by the editor June 3, 2008 and, in revised form, September 26, 2008. 2000 Mathematics Subject Classification. Primary 11B68; Secondary 42A16, 11M35. Key words and phrases. Lipschitz summation formula, Fourier expansion, integral representation, Apostol-Bernoulli and Apostol-Euler polynomials and numbers, Bernoulli and Euler polynomials and numbers, Hurwitz Zeta function, Lerch’s functional equation, rational arguments. The author expresses his sincere gratitude to the referee for valuable suggestions and comments. The author thanks Professor Chi-Wang Shu who helped with the submission of this manuscript to the Web submission system of the AMS.. The present investigation was supported in part by the PCSIRT Project of the Ministry of Education of China under Grant #IRT0621, Innovation Program of Shanghai Municipal Education Committee of China under Grant #08ZZ24 and Henan Innovation Project For University Prominent Research Talents of China under Grant #2007KYCX0021. c ⃝2009 American Mathematical Society Reverts to public domain 28 years from publication

2193

2194

QIU-MING LUO

Definition 1.1 (Apostol [2]; see also Srivastava [20]). The Apostol-Bernoulli polynomials ℬ𝑛 (π‘₯; πœ†) in π‘₯ are defined by means of the generating function ∞ βˆ‘ 𝑧𝑒π‘₯𝑧 𝑧𝑛 (1.3) = ℬ (π‘₯; πœ†) 𝑛 πœ†π‘’π‘§ βˆ’ 1 𝑛=0 𝑛! (βˆ£π‘§βˆ£ < 2πœ‹ when πœ† = 1; βˆ£π‘§βˆ£ < ∣log πœ†βˆ£ when πœ† βˆ•= 1) with, of course, 𝐡𝑛 (π‘₯) = ℬ𝑛 (π‘₯; 1)

and

ℬ𝑛 (πœ†) := ℬ𝑛 (0; πœ†) ,

where ℬ𝑛 (πœ†) denotes the so-called Apostol-Bernoulli numbers (in fact, it is a function in πœ†). Recently, Luo and Srivastava introduced the Apostol-Euler polynomials as follows: Definition 1.2 (Luo [14]; see also Luo and Srivastava [13]). The Apostol-Euler polynomials ℰ𝑛 (π‘₯; πœ†) in π‘₯ are defined by means of the generating function ∞ βˆ‘ 2𝑒π‘₯𝑧 𝑧𝑛 (1.4) = (βˆ£π‘§βˆ£ < ∣log(βˆ’πœ†)∣) , ℰ𝑛 (π‘₯; πœ†) 𝑧 πœ†π‘’ + 1 𝑛=0 𝑛! with, of course, 𝐸𝑛 (π‘₯) = ℰ𝑛 (π‘₯; 1)

and

𝑛

ℰ𝑛 (πœ†) := 2 ℰ𝑛

(

) 1 ;πœ† , 2

where ℰ𝑛 (πœ†) denote the so-called Apostol-Euler numbers (in fact, it is a function in πœ†). Remark 1.3. In Definition 1.1 and Definition 1.2, the original constraints βˆ£π‘§ + log πœ†βˆ£ < 2πœ‹ and βˆ£π‘§ + log πœ†βˆ£ < πœ‹, respectively, should be replaced by the conditions βˆ£π‘§βˆ£ < 2πœ‹ when πœ† = 1; βˆ£π‘§βˆ£ < ∣log πœ†βˆ£ when πœ† βˆ•= 1 and βˆ£π‘§βˆ£ < ∣log(βˆ’πœ†)∣ for the referee’s clear and detailed argumentation. Hence, the corresponding constraints in References [13], [14], [15] and [20] should also be such. The Apostol-Bernoulli and Apostol-Euler polynomials have been investigated by many people (see, e.g., [2], [4], [5], [9], [13]–[17], [20] and [22]). D. H. Lehmer [11] gave a new approach to Bernoulli polynomials, starting from a function equation (Rabbe’s multiplication theorem). H. Haruki and T. M. Rassias [10] provided the new integral representations for the Bernoulli and Euler polynomials as well as using a similar function equation. Recently, D. CvijoviΒ΄c [7] reproduced the results of H. Haruki and T. M. Rassias in a different way and showed several different integral representations for the Bernoulli and Euler polynomials. In the present paper, we first investigate Fourier expansions for the ApostolBernoulli and Apostol-Euler polynomials based on the Lipschitz summation formula, and then provide their integral representations. We obtain some explicit formulas for the Apostol-Bernoulli and Apostol-Euler polynomials at rational arguments in terms of the Hurwitz zeta function. We also deduce the corresponding uniform integral representations for the classical Bernoulli and Euler polynomials. We will see that the results of CvijoviΒ΄c or H. Haruki and T. M. Rassias are the corresponding direct consequences of our formulas. The paper is organized as follows. In the first section we rewrite the definitions of Apostol-Bernoulli and Apostol-Euler polynomials. In the second section we derive

FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS

2195

Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials. In the third section we show their integral representations. In the fourth section we obtain their explicit formulas at rational arguments in terms of the Hurwitz zeta function. In the fifth section we deduce the corresponding uniform integral representations for the classical Bernoulli and Euler polynomials and related results of CvijoviΒ΄c or H. Haruki and T. M. Rassias. In the sixth section we give some applications π‘›βˆ’1 (2πœ‹)2𝑛 𝐡2𝑛 is and remarks; for example, the classical Euler formula 𝜁(2𝑛) = (βˆ’1)2(2𝑛)! obtained according to our method. 2. Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials In this section we investigate Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials by applying the Lipschitz summation formula. First we recall the Lipschitz summation formula (see [12] or [19]) as follows: βˆ‘ 𝑒2πœ‹π‘–(𝑛+πœ‡)𝜏 Ξ“(𝛼) βˆ‘ π‘’βˆ’2πœ‹π‘–π‘˜πœ‡ (2.1) = , 1βˆ’π›Ό (𝑛 + πœ‡) (βˆ’2πœ‹π‘–)𝛼 (𝜏 + π‘˜)𝛼 𝑛+πœ‡>0 π‘˜βˆˆβ„€

where πœ‡ ∈ β„€ and β„œ(𝛼) > 1 or πœ‡ ∈ ℝ βˆ– β„€ and β„œ(𝛼) > 0; 𝜏 ∈ 𝐻 is the complex upper half plane and Ξ“ denotes the Gamma function. Theorem 2.1. For 𝑛 = 1, 0 < π‘₯ < 1 and 𝑛 > 1, 0 ≀ π‘₯ ≀ 1, πœ† ∈ β„‚ βˆ– {0}, we have 𝑒2πœ‹π‘–π‘˜π‘₯ 𝑛! βˆ‘β€² (2.2) ℬ𝑛 (π‘₯; πœ†) = βˆ’π›Ώπ‘› (π‘₯; πœ†) βˆ’ π‘₯ πœ† (2πœ‹π‘–π‘˜ βˆ’ log πœ†)𝑛 [ ∞ ) ] [( 𝑛!𝑖𝑛 βˆ‘ exp βˆ’2πœ‹π‘˜π‘₯ + π‘›πœ‹ 2 𝑖 = βˆ’π›Ώπ‘› (π‘₯; πœ†) βˆ’ π‘₯ (2.3) πœ† (2πœ‹π‘–π‘˜ + log πœ†)𝑛 π‘˜=1 ) ]] [( ∞ βˆ‘ exp 2πœ‹π‘˜π‘₯ βˆ’ π‘›πœ‹ 2 𝑖 + , (2πœ‹π‘–π‘˜ βˆ’ log πœ†)𝑛 where the symbol

βˆ‘β€²

π‘˜=1

denotes the standard convention of a sum over the integers

that omits 0; 𝛿𝑛 (π‘₯; πœ†) = 0 or

(βˆ’1)𝑛 𝑛! πœ†π‘₯ log𝑛 πœ†

according as πœ† = 1 or πœ† βˆ•= 1, respectively.

Proof. For 0 ≀ π‘₯ ≀ 1, by (1.3) and the generalized binomial theorem, we have ∞ ∞ βˆ‘ βˆ‘ 𝑒2πœ‹π‘–πœ π‘₯ (2πœ‹π‘–πœ )π‘˜βˆ’1 = 2πœ‹π‘–πœ =βˆ’ (2.4) β„¬π‘˜ (π‘₯; πœ†) πœ†π‘˜ 𝑒2πœ‹π‘–(π‘˜+π‘₯)𝜏 π‘˜! πœ†π‘’ βˆ’1 π‘˜=0 π‘˜=0 ( ) log βˆ£πœ†βˆ£ ∣log πœ†βˆ£ when πœ† βˆ•= 1; β„‘πœ > ∣𝜏 ∣ < 1 when πœ† = 1; ∣𝜏 ∣ < . 2πœ‹ 2πœ‹ We differentiate both sides of (2.4) with respect to the variable 𝜏 , by 𝑛 βˆ’ 1 times and noting that ℬ0 (π‘₯; πœ†) = 𝛿1,πœ† (see [13, p. 301]). Then we get (2.5)

∞ βˆ‘ π‘˜=𝑛

β„¬π‘˜ (π‘₯; πœ†)

(βˆ’1)π‘›βˆ’1 (𝑛 βˆ’ 1)! (2πœ‹π‘–)π‘˜βˆ’1𝜏 π‘˜βˆ’π‘› + 𝛿1,πœ† π‘˜(π‘˜ βˆ’ 𝑛)! 2πœ‹π‘–πœ 𝑛 = βˆ’(2πœ‹π‘–)π‘›βˆ’1

∞ βˆ‘ π‘˜=0

where 𝛿1,πœ† is the Kronecker symbol.

πœ†π‘˜ (π‘˜ + π‘₯)π‘›βˆ’1 𝑒2πœ‹π‘–(π‘˜+π‘₯)𝜏 ,

2196

QIU-MING LUO

On the other hand, letting 𝛼 = 𝑛, πœ‡ β†’ π‘₯, 𝜏 β†’ 𝜏 + (βˆ’1)𝑛 (𝑛 βˆ’ 1)!

(2.6)

βˆ‘ π‘˜βˆˆβ„€

log πœ† 2πœ‹π‘–

in (2.1), we find that

∞

βˆ‘ π‘’βˆ’2πœ‹π‘–π‘˜π‘₯ πœ†π‘˜+π‘₯ (π‘˜ + π‘₯)π‘›βˆ’1 𝑒2πœ‹π‘–(π‘˜+π‘₯)𝜏 . 𝑛 = [2πœ‹π‘–(𝜏 + π‘˜) + log πœ†] π‘˜=0

Combining (2.5) and (2.6), we obtain πœ†π‘₯

∞ βˆ‘

β„¬π‘˜ (π‘₯; πœ†)

π‘˜=𝑛

(βˆ’1)π‘›βˆ’1 (𝑛 βˆ’ 1)! (2πœ‹π‘–)π‘˜βˆ’1𝜏 π‘˜βˆ’π‘› + πœ†π‘₯ 𝛿1,πœ† π‘˜(π‘˜ βˆ’ 𝑛)! 2πœ‹π‘–πœ 𝑛 = (βˆ’1)π‘›βˆ’1 (𝑛 βˆ’ 1)!(2πœ‹π‘–)π‘›βˆ’1

βˆ‘ π‘˜βˆˆβ„€

π‘’βˆ’2πœ‹π‘–π‘˜π‘₯ . [2πœ‹π‘–(𝜏 + π‘˜) + log πœ†]𝑛

Separating this π‘˜ = 0 term in the above sum on the right side yields that (2.7)

πœ†π‘₯

∞ βˆ‘

β„¬π‘˜ (π‘₯; πœ†)

π‘˜=𝑛

Γ—

βˆ‘β€²

(2πœ‹π‘–)π‘˜βˆ’1𝜏 π‘˜βˆ’π‘› = (βˆ’1)π‘›βˆ’1 (𝑛 βˆ’ 1)!(2πœ‹π‘–)π‘›βˆ’1 π‘˜(π‘˜ βˆ’ 𝑛)!

π‘’βˆ’2πœ‹π‘–π‘˜π‘₯ (βˆ’1)π‘›βˆ’1 (𝑛 βˆ’ 1)!(2πœ‹π‘–)π‘›βˆ’1 (1 βˆ’ 𝛿1,πœ† ). 𝑛 + [2πœ‹π‘–(𝜏 + π‘˜) + log πœ†] (2πœ‹π‘–πœ + log πœ†)𝑛

Letting 𝜏 β†’ 0 in (2.7) we are led at once to the assertion (2.2) of Theorem 2.1. π‘›πœ‹π‘– Noting that 𝑖𝑛 = 𝑒 2 , (βˆ’1)𝑛 = π‘’βˆ’π‘›πœ‹π‘– and via a simple calculation, then the assertion (2.3) of Theorem 2.1 is a direct consequence of (2.2). This completes our proof. β–‘ In the same manner, we may prove the following. Theorem 2.2. For 𝑛 = 0, 0 < π‘₯ < 1 and 𝑛 > 0, 0 ≀ π‘₯ ≀ 1, πœ† ∈ β„‚ βˆ– {0, βˆ’1}, we have (2.8) (2.9)

𝑒(2π‘˜βˆ’1)πœ‹π‘–π‘₯ 2 β‹… 𝑛! βˆ‘ πœ†π‘₯ [(2π‘˜ βˆ’ 1)πœ‹π‘– βˆ’ log πœ†]𝑛+1 π‘˜βˆˆβ„€ [ ∞ [( ) ] 2 β‹… 𝑛!𝑖𝑛+1 βˆ‘ exp 𝑛+1 2 πœ‹ βˆ’ (2π‘˜ + 1)πœ‹π‘₯ 𝑖 = πœ†π‘₯ [(2π‘˜ + 1)πœ‹π‘– + log πœ†]𝑛+1 π‘˜=0 [( ) ]] ∞ βˆ‘ exp βˆ’ 𝑛+1 2 πœ‹ + (2π‘˜ + 1)πœ‹π‘₯ 𝑖 + . 𝑛+1 [(2π‘˜ + 1)πœ‹π‘– βˆ’ log πœ†] π‘˜=0

ℰ𝑛 (π‘₯; πœ†) =

By Theorem 2.1 and Theorem 2.2, we can deduce respectively the Fourier expansions for the classical Bernoulli and Euler polynomials as follows: Corollary 2.3. For 𝑛 = 1, 0 < π‘₯ < 1 and 𝑛 > 1, 0 ≀ π‘₯ ≀ 1, we have (2.10) (2.11)

𝐡𝑛 (π‘₯) = βˆ’ =βˆ’

𝑛! βˆ‘β€² 𝑒2πœ‹π‘–π‘˜π‘₯ (2πœ‹π‘–)𝑛 π‘˜π‘› ( ∞ 2 β‹… 𝑛! βˆ‘ cos 2πœ‹π‘˜π‘₯ βˆ’ (2πœ‹)𝑛

π‘˜=1

π‘˜π‘›

π‘›πœ‹ 2

) .

FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS

2197

Corollary 2.4. For 𝑛 = 0, 0 < π‘₯ < 1 and 𝑛 > 0, 0 ≀ π‘₯ ≀ 1, we have

(2.12) (2.13)

2 β‹… 𝑛! βˆ‘ 𝑒(2π‘˜βˆ’1)πœ‹π‘–π‘₯ (πœ‹π‘–)𝑛+1 (2π‘˜ βˆ’ 1)𝑛+1 π‘˜βˆˆβ„€ [ ∞ 4 β‹… 𝑛! βˆ‘ sin (2π‘˜ + 1)πœ‹π‘₯ βˆ’ = 𝑛+1 πœ‹ (2π‘˜ + 1)𝑛+1

𝐸𝑛 (π‘₯) =

π‘›πœ‹ 2

] .

π‘˜=0

πœ† 1 Remark 2.5. Replacing 𝜏 by 𝜏 + log 2πœ‹π‘– + 2 in (2.1) and applying β„°0 (π‘₯; πœ†) = for details, [13]–[15]) when we prove the assertion (2.8) of Theorem 2.2.

2 πœ†+1

(see,

Remark 2.6. We define the 𝑛-th Apostol-Bernoulli function as (2.14)

ℬˆ𝑛 (π‘₯; πœ†) := ℬ𝑛 (π‘₯; πœ†) (0 ≀ π‘₯ < 1),

ℬˆ𝑛 (π‘₯ + 1; πœ†) = πœ†βˆ’1 ℬˆ𝑛 (π‘₯; πœ†),

which is also called the quasi-periodicity Apostol-Bernoulli polynomials. For any π‘₯ ∈ ℝ, π‘Ÿ ∈ β„€, we have (2.15)

ℬˆ𝑛 (π‘₯; πœ†) = πœ†βˆ’[π‘₯] ℬ𝑛 ({π‘₯}; πœ†),

ℬˆ𝑛 (π‘₯ + π‘Ÿ; πœ†) = πœ†βˆ’π‘Ÿ ℬˆ𝑛 (π‘₯; πœ†).

Here the notation {π‘₯} denotes the fractional part of π‘₯, and the notation [π‘₯] denotes the greatest integer not exceeding π‘₯. Clearly, the Apostol-Bernoulli polynomials ℬ𝑛 (π‘₯; πœ†) (0 ≀ π‘₯ < 1) are the quasiperiodicity functions in π‘₯ with period 1. One of the special cases of the quasiperiodicity Apostol-Bernoulli polynomials is just Carlitz’s periodic Bernoulli function [3, p. 661] for πœ† = 1. Remark 2.7. We define the 𝑛-th Apostol-Euler function as (2.16)

ℰˆ𝑛 (π‘₯; πœ†) := ℰ𝑛 (π‘₯; πœ†) (0 ≀ π‘₯ < 1),

ℰˆ𝑛 (π‘₯ + 1; πœ†) = βˆ’πœ†βˆ’1 ℰˆ𝑛 (π‘₯; πœ†),

which is called the quasi-periodicity Apostol-Euler polynomials. For any π‘₯ ∈ ℝ, π‘Ÿ ∈ β„€, we have (2.17)

ℰˆ𝑛 (π‘₯; πœ†) = (βˆ’1)[π‘₯] πœ†βˆ’[π‘₯] ℰ𝑛 ({π‘₯}; πœ†),

ℰˆ𝑛 (π‘₯ + π‘Ÿ; πœ†) = (βˆ’1)π‘Ÿ πœ†βˆ’π‘Ÿ ℰˆ𝑛 (π‘₯; πœ†).

Obviously, the Apostol-Euler polynomials ℰ𝑛 (π‘₯; πœ†) (0 ≀ π‘₯ < 1) are the quasiperiodicity functions in π‘₯ with period 1. One of the special cases of the quasiperiodicity Apostol-Euler polynomials is just Carlitz’s periodic Euler function [3, p. 661] for πœ† = 1.

2198

QIU-MING LUO

Remark 2.8. We employ a useful relationship [15, p. 636, Eq. (38)] (2.18)

ℰ𝑛 (π‘₯; πœ†) =

(π‘₯ )] 2 [ ℬ𝑛+1 (π‘₯; πœ†) βˆ’ 2𝑛+1 ℬ𝑛+1 ; πœ†2 𝑛+1 2

to (2.2) and (2.3), respectively; we can also arrive at the corresponding (2.8) and (2.9). Remark 2.9. Throughout this paper, we take the principal value of the logarithm log πœ†, i.e., log πœ† = log βˆ£πœ†βˆ£+𝑖 arg πœ† (βˆ’πœ‹ < arg πœ† ≀ πœ‹) when πœ† βˆ•= 1; We choose log 1 = 0 when πœ† = 1.

3. Integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials In this section we give the integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials with their Fourier expansions. For convenience, we take πœ† = 𝑒2πœ‹π‘–πœ‰ (πœ‰ ∈ ℝ, βˆ£πœ‰βˆ£ < 1) in this section. Theorem 3.1. For 𝑛 = 1, 2, . . . , 0 ≀ β„œ(π‘₯) ≀ 1, βˆ£πœ‰βˆ£ < 1, πœ‰ ∈ ℝ, we have (3.1)

ℬ𝑛 (π‘₯; 𝑒2πœ‹π‘–πœ‰ ) = βˆ’Ξ”π‘› (π‘₯; πœ‰) ∫ ∞ π‘ˆ (𝑛; π‘₯, 𝑑) cosh(2πœ‹πœ‰π‘‘) + 𝑖 𝑉 (𝑛; π‘₯, 𝑑) sinh(2πœ‹πœ‰π‘‘) π‘›βˆ’1 βˆ’ π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ 𝑑 d𝑑, cosh 2πœ‹π‘‘ βˆ’ cos 2πœ‹π‘₯ 0

where Δ𝑛 (π‘₯; πœ‰) = 0 or

(βˆ’1)𝑛 𝑛! 𝑒2πœ‹π‘–π‘₯πœ‰ (2πœ‹π‘–πœ‰)𝑛

according as πœ‰ = 0 or πœ‰ βˆ•= 0, respectively, and

] ( π‘›πœ‹ ) [ ( π‘›πœ‹ ) βˆ’ cos π‘’βˆ’2πœ‹π‘‘ , π‘ˆ (𝑛; π‘₯, 𝑑) = cos 2πœ‹π‘₯ βˆ’ 2 2) [ ( ] ( π‘›πœ‹ π‘›πœ‹ ) 𝑉 (𝑛; π‘₯, 𝑑) = sin 2πœ‹π‘₯ βˆ’ + sin π‘’βˆ’2πœ‹π‘‘ . 2 2 Proof. Returning to (2.2) and setting πœ† = 𝑒2πœ‹π‘–πœ‰ , π‘˜ β†’ βˆ’π‘˜ yields ℬ𝑛 (π‘₯; 𝑒2πœ‹π‘–πœ‰ ) = βˆ’Ξ”π‘› (π‘₯; πœ‰) βˆ’

𝑛!π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ βˆ‘β€² π‘’βˆ’2πœ‹π‘–π‘˜π‘₯ . (βˆ’2πœ‹π‘–)𝑛 (π‘˜ + πœ‰)𝑛

Using the known integral formula ∫ (3.2)

0

∞

𝑑𝑛 π‘’βˆ’π‘Žπ‘‘ d𝑑 =

𝑛! π‘Žπ‘›+1

(𝑛 = 0, 1, . . . ; β„œ(π‘Ž) > 0),

( )𝑛 π‘›πœ‹π‘– and noting that βˆ’ 1𝑖 = 𝑒 2 and (βˆ’1)𝑛 = π‘’βˆ’π‘›πœ‹π‘– , then we have

FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS

2πœ‹π‘–πœ‰

ℬ𝑛 (π‘₯; 𝑒

π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ = βˆ’ Δ𝑛 (π‘₯; πœ‰) βˆ’ (βˆ’2πœ‹π‘–)𝑛

)

{

∞ βˆ‘

𝑛

{∫ 0

{∫

{∫

π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ 2(2πœ‹)𝑛 ∫ +

2πœ‹π‘–π‘˜π‘₯

𝑒

∫

∞

0

∞

∫

∞

∞ βˆ‘

} 𝑑

π‘›βˆ’1 βˆ’(π‘˜βˆ’πœ‰)𝑑

𝑒

d𝑑

π‘’βˆ’(2πœ‹π‘–π‘₯+𝑑)π‘˜ d𝑑

π‘˜=1 ∞ βˆ‘ πœ‰π‘‘ π‘›βˆ’1 (2πœ‹π‘–π‘₯βˆ’π‘‘)π‘˜

𝑒 𝑑

𝑒

} d𝑑

π‘˜=1

𝑒𝑑 ∫

π‘‘π‘›βˆ’1 π‘’βˆ’(π‘˜+πœ‰)𝑑 d𝑑

0

π‘’βˆ’πœ‰π‘‘ π‘‘π‘›βˆ’1

∞

0

∞

0

∞ βˆ‘

∞

+ (βˆ’1)𝑛 = βˆ’ Δ𝑛 (π‘₯; πœ‰) βˆ’

𝑒

π‘˜=1

+ (βˆ’1)𝑛 π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ = βˆ’ Δ𝑛 (π‘₯; πœ‰) βˆ’ (βˆ’2πœ‹π‘–)𝑛

∫

π‘˜=1

+ (βˆ’1) π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ = βˆ’ Δ𝑛 (π‘₯; πœ‰) βˆ’ (βˆ’2πœ‹π‘–)𝑛

βˆ’2πœ‹π‘–π‘˜π‘₯

2199

π‘’βˆ’2πœ‹π‘–π‘₯ π‘’βˆ’πœ‰π‘‘ π‘‘π‘›βˆ’1 d𝑑 βˆ’ π‘’βˆ’2πœ‹π‘–π‘₯

∞

0

𝑒2πœ‹π‘–π‘₯ π‘’πœ‰π‘‘ π‘‘π‘›βˆ’1 d𝑑 𝑒𝑑 βˆ’ 𝑒2πœ‹π‘–π‘₯

}

π‘›πœ‹π‘– 2

(π‘’βˆ’2πœ‹π‘–π‘₯ βˆ’ π‘’βˆ’π‘‘ ) βˆ’πœ‰π‘‘ π‘›βˆ’1 𝑒 𝑑 d𝑑 cosh 𝑑 βˆ’ cos 2πœ‹π‘₯ 0 } ∞ βˆ’ π‘›πœ‹π‘– 𝑒 2 (𝑒2πœ‹π‘–π‘₯ βˆ’ π‘’βˆ’π‘‘ ) πœ‰π‘‘ π‘›βˆ’1 𝑒 𝑑 d𝑑 . cosh 𝑑 βˆ’ cos 2πœ‹π‘₯ 0 𝑒

It follows that we make the transformation 𝑑 = 2πœ‹π‘’, and after simplification we obtain the desired (3.1) immediately. This completes the proof. β–‘ We can obtain the following integral representations for the Apostol-Euler polynomials by a similar method. Theorem 3.2. For 𝑛 = 1, 2, . . . , 0 ≀ β„œ(π‘₯) ≀ 1, βˆ£πœ‰βˆ£ < 12 , πœ‰ ∈ ℝ, we have (3.3)

where

ℰ𝑛 (π‘₯; 𝑒2πœ‹π‘–πœ‰ ) = 2π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ ∫ ∞ 𝑋(𝑛; π‘₯, 𝑑) cosh(2πœ‹πœ‰π‘‘) + 𝑖 π‘Œ (𝑛; π‘₯, 𝑑) sinh(2πœ‹πœ‰π‘‘) 𝑛 𝑑 d𝑑, Γ— cosh 2πœ‹π‘‘ βˆ’ cos 2πœ‹π‘₯ 0 [ ( ( π‘›πœ‹ ) π‘›πœ‹ )] 𝑋(𝑛; π‘₯, 𝑑) = π‘’βˆ’πœ‹π‘‘ sin πœ‹π‘₯ + + π‘’πœ‹π‘‘ sin πœ‹π‘₯ βˆ’ , 2 ) 2 )] [ ( ( π‘›πœ‹ π‘›πœ‹ π‘Œ (𝑛; π‘₯, 𝑑) = π‘’βˆ’πœ‹π‘‘ cos πœ‹π‘₯ + βˆ’ π‘’πœ‹π‘‘ cos πœ‹π‘₯ βˆ’ . 2 2

On the other hand, we can also arrive at the following different integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials. Theorem 3.3. For 𝑛 = 1, 2, . . . , 0 ≀ β„œ(π‘₯) ≀ 1, βˆ£πœ‰βˆ£ < 1, πœ‰ ∈ ℝ, we have (3.4)

ℬ𝑛 (π‘₯; 𝑒2πœ‹π‘–πœ‰ ) = βˆ’Ξ”π‘› (π‘₯; πœ‰) + ∫ Γ—

0

1

2π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ (βˆ’2πœ‹)𝑛

π‘ˆ β€² (𝑛; π‘₯, 𝑑) cosh(πœ‰ log 𝑑) βˆ’ 𝑖 𝑉 β€² (𝑛; π‘₯, 𝑑) sinh(πœ‰ log 𝑑) (log 𝑑)π‘›βˆ’1 d𝑑, 𝑑2 βˆ’ 2𝑑 cos 2πœ‹π‘₯ + 1

2200

QIU-MING LUO

(βˆ’1)𝑛 𝑛! according as πœ‰ = 0 or πœ‰ βˆ•= 0, respectively, and 𝑒2πœ‹π‘–π‘₯πœ‰ (2πœ‹π‘–πœ‰)𝑛 [ ( ( π‘›πœ‹ )] π‘›πœ‹ ) π‘ˆ β€² (𝑛; π‘₯, 𝑑) = cos 2πœ‹π‘₯ βˆ’ βˆ’ 𝑑 cos , 2) 2 )] ( [ ( π‘›πœ‹ π‘›πœ‹ + 𝑑 sin . 𝑉 β€² (𝑛; π‘₯, 𝑑) = sin 2πœ‹π‘₯ βˆ’ 2 2

where Δ𝑛 (π‘₯; πœ‰) = 0 or

Proof. First we substitute cosh 2πœ‹π‘‘ = (3.5)

𝑒2πœ‹π‘‘ +π‘’βˆ’2πœ‹π‘‘ 2

into (3.1). Then we see that

ℬ𝑛 (π‘₯; 𝑒2πœ‹π‘–πœ‰ ) = βˆ’Ξ”π‘› (π‘₯; πœ‰) βˆ’ 2π‘›π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ ∫ ∞ π‘ˆ (𝑛; π‘₯, 𝑑) cosh(2πœ‹πœ‰π‘‘) + 𝑖 𝑉 (𝑛; π‘₯, 𝑑) sinh(2πœ‹πœ‰π‘‘) π‘›βˆ’1 𝑑 Γ— d𝑑. 𝑒2πœ‹π‘‘ + π‘’βˆ’2πœ‹π‘‘ βˆ’ 2 cos 2πœ‹π‘₯ 0

Then making the transformation 𝑒 = π‘’βˆ’2πœ‹π‘‘ in (3.5), we easily obtain formula (3.4). This completes the proof. β–‘ Similarly, we obtain Theorem 3.4. For 𝑛 = 1, 2, . . . , 0 ≀ β„œ(π‘₯) ≀ 1, βˆ£πœ‰βˆ£ < 12 , πœ‰ ∈ ℝ, we have (3.6)

where

4π‘’βˆ’2πœ‹π‘–π‘₯πœ‰ ℰ𝑛 (π‘₯; 𝑒2πœ‹π‘–πœ‰ ) = (βˆ’1)𝑛 πœ‹ 𝑛+1 ∫ 1 β€² 𝑋 (𝑛; π‘₯, 𝑑) cosh(2πœ‰ log 𝑑) βˆ’ 𝑖 π‘Œ β€² (𝑛; π‘₯, 𝑑) sinh(2πœ‰ log 𝑑) (log 𝑑)𝑛 d𝑑, Γ— 4 βˆ’ 2𝑑2 cos 2πœ‹π‘₯ + 1 𝑑 0 ( [ ( π‘›πœ‹ )] π‘›πœ‹ ) + sin πœ‹π‘₯ βˆ’ , 𝑋 β€² (𝑛; π‘₯, 𝑑) = 𝑑2 sin πœ‹π‘₯ + 2 ) 2 )] ( [ ( π‘›πœ‹ π‘›πœ‹ π‘Œ β€² (𝑛; π‘₯, 𝑑) = 𝑑2 cos πœ‹π‘₯ + βˆ’ cos πœ‹π‘₯ βˆ’ . 2 2

Remark 3.5. For any integers β„“, we see easily that ℬ𝑛 (π‘₯; 𝑒2πœ‹π‘–(β„“+πœ‰) ) = ℬ𝑛 (π‘₯; 𝑒2πœ‹π‘–πœ‰ ), ℰ𝑛 (π‘₯; 𝑒2πœ‹π‘–(β„“+πœ‰) ) = ℰ𝑛 (π‘₯; 𝑒2πœ‹π‘–πœ‰ ). Therefore, the Apostol-Bernoulli polynomials ℬ𝑛 (π‘₯; 𝑒2πœ‹π‘–πœ‰ ) and the Apostol-Euler polynomials ℰ𝑛 (π‘₯; 𝑒2πœ‹π‘–πœ‰ ) are the periodicity functions in πœ‰ with period 2πœ‹. In view of this observation we say that πœ‰ may take any real numbers in Theorem 3.1–Theorem 3.4. Remark 3.6. We can also prove Theorem 2.1 and Theorem 2.2 by Theorem 3.1 and Theorem 3.2, respectively, in an inverse process. 4. Explicit formulas for the Apostol-Bernoulli and Apostol-Euler polynomials at rational arguments In this section we obtain some explicit formulas for the Apostol-Bernoulli and Apostol-Euler polynomials at rational arguments. We can see that some known formulas of CvijoviΒ΄c and Klinowski are the corresponding special cases of our formulas. The Hurwitz-Lerch zeta function Ξ¦(𝑧, 𝑠, π‘Ž) defined by (cf., e.g., [21, p. 121, et seq.]) (4.1)

Ξ¦(𝑧, 𝑠, π‘Ž) :=

∞ βˆ‘

𝑧𝑛 (𝑛 + π‘Ž)𝑠 𝑛=0

( ) π‘Ž ∈ β„‚ βˆ– β„€βˆ’ 0 ; 𝑠 ∈ β„‚ when βˆ£π‘§βˆ£ < 1; β„œ(𝑠) > 1 when βˆ£π‘§βˆ£ = 1

FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS

2201

contains, as its special cases, not only the Riemann and Hurwitz zeta functions (4.2)

𝜁(𝑠) := Ξ¦(1, 𝑠, 1) = 𝜁 (𝑠, 1) =

( ) βˆ‘ ∞ 1 1 1 𝜁 𝑠, = 𝑠 2 βˆ’1 2 𝑛𝑠 𝑛=1

and (4.3)

𝜁(𝑠, π‘Ž) := Ξ¦(1, 𝑠, π‘Ž) =

∞ βˆ‘

1 𝑠 (𝑛 + π‘Ž) 𝑛=0

( ) β„œ (𝑠) > 1; π‘Ž ∈ / β„€βˆ’ 0

and the Lerch zeta function (or periodic zeta function) (4.4)

∞ βˆ‘ ( ) 𝑒2π‘›πœ‹π‘–πœ‰ = 𝑒2πœ‹π‘–πœ‰ Ξ¦ 𝑒2πœ‹π‘–πœ‰ , 𝑠, 1 𝑠 𝑛 𝑛=1

𝑙𝑠 (πœ‰) :=

(πœ‰ ∈ ℝ; β„œ(𝑠) > 1) , but also such other functions as the polylogarithmic function (4.5)

Li𝑠 (𝑧) := ( π‘ βˆˆβ„‚

when

∞ βˆ‘ 𝑧𝑛 = 𝑧 Ξ¦(𝑧, 𝑠, 1) 𝑛𝑠 𝑛=1

βˆ£π‘§βˆ£ < 1; β„œ(𝑠) > 1 when

) βˆ£π‘§βˆ£ = 1

and the Lipschitz-Lerch zeta function (cf. [21, p. 122, Eq. 2.5 (11)]) (4.6)

πœ™(πœ‰, π‘Ž, 𝑠) :=

∞ βˆ‘ ( ) 𝑒2π‘›πœ‹π‘–πœ‰ = Ξ¦ 𝑒2πœ‹π‘–πœ‰ , 𝑠, π‘Ž =: 𝐿 (πœ‰, 𝑠, π‘Ž) 𝑠 (𝑛 + π‘Ž) 𝑛=0

( π‘Ž ∈ β„‚ βˆ– β„€βˆ’ 0 ; β„œ(𝑠) > 0 when πœ‰ ∈ ℝ βˆ– β„€; β„œ(𝑠) > 1 when

) πœ‰βˆˆβ„€ ,

which was first studied by Rudolf Lipschitz (1832-1903) and MatyΒ΄ aΛ‡s Lerch (18601922) in connection with Dirichlet’s famous theorem on primes in arithmetic progressions. Recently, H. M. Srivastava made use of Apostol’s formula (see [2, p. 164]) (4.7)

2πœ‹π‘–πœ‰

πœ™(πœ‰, π‘Ž, 1 βˆ’ 𝑛) = Ξ¦(𝑒

( ) ℬ𝑛 π‘Ž; 𝑒2πœ‹π‘–πœ‰ , 1 βˆ’ 𝑛, π‘Ž) = βˆ’ 𝑛

(𝑛 ∈ β„•)

and Lerch’s functional equation (see [2, p. 161, (1.4)]) (4.8)

Ξ“(𝑠) πœ™(πœ‰, π‘Ž, 1 βˆ’ 𝑠) = (2πœ‹)𝑠

) ] { [( 1 𝑠 βˆ’ 2π‘Žπœ‰ πœ‹π‘– πœ™ (βˆ’π‘Ž, πœ‰, 𝑠) exp 2 ) ] } [( 1 + exp βˆ’ 𝑠 + 2π‘Ž(1 βˆ’ πœ‰) πœ‹π‘– πœ™(π‘Ž, 1 βˆ’ πœ‰, 𝑠) 2 (𝑠 ∈ β„‚; 0 < πœ‰ < 1)

2202

QIU-MING LUO

to derive the following formula of Apostol-Bernoulli polynomials at rational arguments (see [20, p. 84, Eq. (4.6)]): (4.9) { π‘ž ( ( ) ) [( ) ] βˆ‘ 𝑝 2πœ‹π‘–πœ‰ 𝑛 2(πœ‰ + 𝑗 βˆ’ 1)𝑝 πœ‰+π‘—βˆ’1 𝑛! ℬ𝑛 ;𝑒 βˆ’ 𝜁 𝑛, =βˆ’ exp πœ‹π‘– π‘ž (2π‘žπœ‹)𝑛 𝑗=1 π‘ž 2 π‘ž ( ) [( ) ]} π‘ž βˆ‘ π‘—βˆ’πœ‰ 𝑛 2(𝑗 βˆ’ πœ‰)𝑝 𝜁 𝑛, + exp βˆ’ + πœ‹π‘– π‘ž 2 π‘ž 𝑗=1 (4.10)

(𝑛 ∈ β„• βˆ– {1} ; π‘ž ∈ β„•; 𝑝 ∈ β„€; πœ‰ ∈ ℝ).

Below we obtain similar formulas by using Fourier expansions for the ApostolBernoulli polynomials and Apostol-Euler polynomials, respectively. Theorem 4.1. For 𝑛 ∈ β„• βˆ– {1} , π‘ž ∈ β„•, 𝑝 ∈ β„€, πœ‰ ∈ ℝ, βˆ£πœ‰βˆ£ < 1, the following formula of Apostol-Bernoulli polynomials at rational arguments (4.11) { π‘ž ( ( ) ( ) ) [( ) ] βˆ‘ 𝑝 2πœ‹π‘–πœ‰ 𝑝 𝑛 2(𝑗 + πœ‰)𝑝 𝑗+πœ‰ 𝑛! ℬ𝑛 𝜁 𝑛, = βˆ’ Δ𝑛 ;𝑒 ;πœ‰ βˆ’ exp βˆ’ πœ‹π‘– π‘ž π‘ž (2πœ‹π‘ž)𝑛 𝑗=1 π‘ž 2 π‘ž ( ) [( ) ]} π‘ž βˆ‘ π‘—βˆ’πœ‰ 𝑛 2(𝑗 βˆ’ πœ‰)𝑝 𝜁 𝑛, + exp βˆ’ + πœ‹π‘– π‘ž 2 π‘ž 𝑗=1 holds true in terms of the Hurwitz zeta function, where Δ𝑛 (π‘₯; πœ‰) = 0 or according as πœ‰ = 0 or πœ‰ βˆ•= 0, respectively.

(βˆ’1)𝑛 𝑛! 𝑒2πœ‹π‘–π‘₯πœ‰ (2πœ‹π‘–πœ‰)𝑛

Proof. We employ formula (2.3), [∞ )] ) ]] [( [( ∞ βˆ‘ exp 2πœ‹π‘˜π‘₯ βˆ’ π‘›πœ‹ 𝑛!𝑖𝑛 βˆ‘ exp βˆ’2πœ‹π‘˜π‘₯ + π‘›πœ‹ 2 𝑖 2 𝑖 ℬ𝑛 (π‘₯; πœ†) = βˆ’π›Ώπ‘› (π‘₯; πœ†) βˆ’ π‘₯ + , πœ† (2πœ‹π‘–π‘˜ + log πœ†)𝑛 (2πœ‹π‘–π‘˜ βˆ’ log πœ†)𝑛 π‘˜=1

π‘˜=1

so that, in view of the definition (4.1) and the elementary series identity ∞ βˆ‘

(4.12)

𝑓 (π‘˜) =

π‘˜=1

β„“ βˆ‘ ∞ βˆ‘

𝑓 (β„“π‘˜ + 𝑗)

(β„“ ∈ β„•) ,

𝑗=1 π‘˜=0

we find the formula: (4.13)

𝑛!𝑖𝑛 πœ†βˆ’π‘₯ ℬ𝑛 (π‘₯; πœ†) = βˆ’ 𝛿𝑛 (π‘₯; πœ†) βˆ’ (2πœ‹π‘–β„“)𝑛 ⎑ ( ) β„“ [( βˆ‘ 2πœ‹π‘–π‘— βˆ’ log πœ† π‘›πœ‹ ) ] 2πœ‹π‘–β„“π‘₯ ⎣ Γ— Ξ¦ 𝑒 , 𝑛, exp 2πœ‹π‘—π‘₯ βˆ’ 𝑖 2πœ‹π‘–β„“ 2 𝑗=1

⎀ ( ) ) ] [ ( 2πœ‹π‘–π‘— + log πœ† π‘›πœ‹ 𝑖 ⎦. Ξ¦ π‘’βˆ’2πœ‹π‘–β„“π‘₯ , 𝑛, + exp βˆ’ 2πœ‹π‘—π‘₯ + 2πœ‹π‘–β„“ 2 𝑗=1 β„“ βˆ‘

Setting πœ† = exp(2πœ‹π‘–πœ‰), π‘₯ = π‘π‘ž , β„“ = π‘ž in (4.13), we then obtain the assertion of Theorem 4.1. This completes the proof. β–‘

FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS

2203

If we make use of the equivalent of (2.9) as [ ∞ [( ) ] 2 β‹… 𝑛!𝑖𝑛+1 βˆ‘ exp 𝑛+1 2 πœ‹ βˆ’ (2π‘˜ βˆ’ 1)πœ‹π‘₯ 𝑖 ℰ𝑛 (π‘₯; πœ†) = 𝑛+1 πœ†π‘₯ [(2π‘˜ βˆ’ 1)πœ‹π‘– + log πœ†] π‘˜=1 (4.14) [( ) ]] ∞ βˆ‘ exp βˆ’ 𝑛+1 2 πœ‹ + (2π‘˜ βˆ’ 1)πœ‹π‘₯ 𝑖 + 𝑛+1 [(2π‘˜ βˆ’ 1)πœ‹π‘– βˆ’ log πœ†] π‘˜=1 and the elementary series identity (4.12), by an analogous method, we provide that Theorem 4.2. For 𝑛, π‘ž ∈ β„•, 𝑝 ∈ β„€, πœ‰ ∈ ℝ, βˆ£πœ‰βˆ£ < 1, the following formula of Apostol-Euler polynomials at rational arguments ( ) 𝑝 2πœ‹π‘–πœ‰ 2 β‹… 𝑛! ;𝑒 ℰ𝑛 = π‘ž (2π‘žπœ‹)𝑛+1 { π‘ž ( ) [( ) ] βˆ‘ 𝑛 + 1 (2𝑗 + 2πœ‰ βˆ’ 1)𝑝 2𝑗 + 2πœ‰ βˆ’ 1 βˆ’ Γ— 𝜁 𝑛 + 1, exp πœ‹π‘– (4.15) 2π‘ž 2 π‘ž 𝑗=1 ( ) [( ) ]} π‘ž βˆ‘ 2𝑗 βˆ’ 2πœ‰ βˆ’ 1 𝑛 + 1 (2𝑗 βˆ’ 2πœ‰ βˆ’ 1)𝑝 + 𝜁 𝑛 + 1, + exp βˆ’ πœ‹π‘– 2π‘ž 2 π‘ž 𝑗=1 holds true in terms of the Hurwitz zeta function. Upon the special cases of (4.11) and (4.15), for πœ‰ = 0, are respectively the following known results given earlier by CvijoviΒ΄c and Klinowski. Corollary 4.3 ([6, p. 1529, Theorem A]). For 𝑛 ∈ β„• βˆ– {1} , π‘ž ∈ β„•, 𝑝 ∈ β„€, the following formula for the classical Bernoulli polynomials ( ( ) ) ( ) π‘ž 𝑝 2π‘—π‘πœ‹ π‘›πœ‹ 𝑗 2 β‹… 𝑛! βˆ‘ βˆ’ 𝜁 𝑛, 𝐡𝑛 =βˆ’ cos π‘ž (2π‘žπœ‹)𝑛 𝑗=1 π‘ž π‘ž 2 holds true. Corollary 4.4 ([6, p. 1529, Theorem B]). For 𝑛, π‘ž ∈ β„•, 𝑝 ∈ β„€, the following formula for the classical Euler polynomials ( ( ) ) ( ) π‘ž 𝑝 (2𝑗 βˆ’ 1)π‘πœ‹ π‘›πœ‹ 2𝑗 βˆ’ 1 4 β‹… 𝑛! βˆ‘ βˆ’ 𝜁 𝑛 + 1, 𝐸𝑛 = sin π‘ž (2π‘žπœ‹)𝑛+1 𝑗=1 2π‘ž π‘ž 2 holds true. Remark 4.5. We may also prove formula (4.15) by applying the relationship (2.18) and Theorem 4.1. Remark 4.6. In view of Remark 3.5, we say that πœ‰ is any real number in Theorem 4.1 and Theorem 4.2. Remark 4.7. Obviously, Srivastava’s formula (4.9) is an equivalent with our formula (4.11).

2204

QIU-MING LUO

5. Integral representations for the Bernoulli and Euler polynomials In this section we will see that Theorem 5.1 and Theorem 5.2 below involve the results of CvijoviΒ΄c or H. Haruki and T. M. Rassias. By (3.1) and (3.3) for πœ‰ = 0, it follows that we give the uniform integral representations for the classical Bernoulli and Euler polynomials, respectively. Theorem 5.1. For 𝑛 = 1, 2, . . . , 0 ≀ β„œ(π‘₯) ≀ 1, we have ) ( ( ) ∫ ∞ βˆ’ π‘’βˆ’2πœ‹π‘‘ cos π‘›πœ‹ cos 2πœ‹π‘₯ βˆ’ π‘›πœ‹ 2 2 π‘‘π‘›βˆ’1 d𝑑. (5.1) 𝐡𝑛 (π‘₯) = βˆ’π‘› cosh 2πœ‹π‘‘ βˆ’ cos 2πœ‹π‘₯ 0 Theorem 5.2. For 𝑛 = 1, 2, . . . , 0 ≀ β„œ(π‘₯) ≀ 1, we have ) ( ( ∫ ∞ πœ‹π‘‘ + π‘’βˆ’πœ‹π‘‘ sin πœ‹π‘₯ + 𝑒 sin πœ‹π‘₯ βˆ’ π‘›πœ‹ 2 (5.2) 𝐸𝑛 (π‘₯) = 2 cosh 2πœ‹π‘‘ βˆ’ cos 2πœ‹π‘₯ 0

π‘›πœ‹ 2

) 𝑑𝑛 d𝑑.

Remark 5.3. Theorem 5.1 and Theorem 5.2 above show the uniform integral representations for the classical Bernoulli and Euler polynomials which were never found in the classical literature, for example [1], [8] and [18], etc. So these uniform formulas are interesting in this subject. By (3.4) and (3.6) for πœ‰ = 0, we easily find the following additional integral representations for the classical Bernoulli and Euler polynomials, respectively. Theorem 5.4. For 𝑛 = 1, 2, . . . , 0 ≀ β„œ(π‘₯) ≀ 1, we have ) ( ) ( ∫ 1 βˆ’ 𝑑 cos π‘›πœ‹ cos 2πœ‹π‘₯ βˆ’ π‘›πœ‹ 𝑛 2𝑛 2 2 (log 𝑑)π‘›βˆ’1 d𝑑. (5.3) 𝐡𝑛 (π‘₯) = (βˆ’1) (2πœ‹)𝑛 0 𝑑2 βˆ’ 2𝑑 cos 2πœ‹π‘₯ + 1 Theorem 5.5. For 𝑛 = 1, 2, . . . , 0 ≀ β„œ(π‘₯) ≀ 1, we have ) ( ( ∫ 1 + 𝑑2 sin πœ‹π‘₯ + sin πœ‹π‘₯ βˆ’ π‘›πœ‹ 𝑛 4 2 (5.4) 𝐸𝑛 (π‘₯) = (βˆ’1) 𝑛+1 πœ‹ 𝑑4 βˆ’ 2𝑑2 cos 2πœ‹π‘₯ + 1 0

π‘›πœ‹ 2

) (log 𝑑)𝑛 d𝑑.

We see easily that Theorem 5.4 and Theorem 5.5 imply the main results of CvijoviΒ΄c [7, p. 170, Theorem 1] or H. Haruki and T. M. Rassias [10, p. 82, Theorem (ii)(iv)], i.e., (5.5) (5.6) (5.7) (5.8)

2(2𝑛) 𝐡2𝑛 (π‘₯) = (βˆ’1) (2πœ‹)2𝑛

∫

1

cos 2πœ‹π‘₯ βˆ’ 𝑑 (log 𝑑)2π‘›βˆ’1 d𝑑, 2 βˆ’ 2𝑑 cos 2πœ‹π‘₯ + 1 𝑑 0 ∫ 2(2𝑛 βˆ’ 1) 1 sin 2πœ‹π‘₯ 𝑛 𝐡2π‘›βˆ’1 (π‘₯) = (βˆ’1) (log 𝑑)2π‘›βˆ’2 d𝑑, (2πœ‹)2π‘›βˆ’1 0 𝑑2 βˆ’ 2𝑑 cos 2πœ‹π‘₯ + 1 ∫ 1 4 (𝑑2 + 1) sin πœ‹π‘₯ 𝐸2𝑛 (π‘₯) = (βˆ’1)𝑛 2𝑛+1 (log 𝑑)2𝑛 d𝑑, 4 2 πœ‹ 0 𝑑 βˆ’ 2𝑑 cos 2πœ‹π‘₯ + 1 ∫ 1 4 (𝑑2 βˆ’ 1) cos πœ‹π‘₯ (log 𝑑)2π‘›βˆ’1 d𝑑. 𝐸2π‘›βˆ’1 (π‘₯) = (βˆ’1)𝑛 2𝑛 4 2 πœ‹ 0 𝑑 βˆ’ 2𝑑 cos 2πœ‹π‘₯ + 1 𝑛

On the other hand, Theorem 5.1 and Theorem 5.2 also imply the classical integral representations for the Bernoulli polynomials and Euler polynomials, respectively

FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS

(see [18, pp. 27, 31]): (5.9) (5.10) (5.11) (5.12)

∫

2205

∞

cos 2πœ‹π‘₯ βˆ’ π‘’βˆ’2πœ‹π‘‘ 2π‘›βˆ’1 𝑑 d𝑑, cosh 2πœ‹π‘‘ βˆ’ cos 2πœ‹π‘₯ 0 ∫ ∞ sin 2πœ‹π‘₯ 𝑑2π‘›βˆ’2 d𝑑, 𝐡2π‘›βˆ’1 (π‘₯) = (βˆ’1)𝑛 (2𝑛 βˆ’ 1) cosh 2πœ‹π‘‘ βˆ’ cos 2πœ‹π‘₯ 0 ∫ ∞ sin πœ‹π‘₯ cosh πœ‹π‘‘ 𝑛 𝑑2𝑛 d𝑑, 𝐸2𝑛 (π‘₯) = 4(βˆ’1) cosh 2πœ‹π‘‘ βˆ’ cos 2πœ‹π‘₯ 0 ∫ ∞ cos πœ‹π‘₯ sinh πœ‹π‘‘ 𝑛 𝑑2π‘›βˆ’1 d𝑑. 𝐸2π‘›βˆ’1 (π‘₯) = 4(βˆ’1) cosh 2πœ‹π‘‘ βˆ’ cos 2πœ‹π‘₯ 0

𝐡2𝑛 (π‘₯) = (βˆ’1)𝑛+1 (2𝑛)

Remark 5.6. If we make an appropriate transformation 𝑒 = π‘’βˆ’2πœ‹π‘‘ in (5.9) and (5.10), and make a suitable transformation 𝑒 = π‘’βˆ’πœ‹π‘‘ in (5.11) and (5.12), respectively, then we can directly obtain (5.5)–(5.8); i.e., the main results of CvijoviΒ΄c or H. Haruki and T. M. Rassias are only a very simple transmogrification for the corresponding classical cases (5.9)–(5.12). Therefore, in view of this reason, we say that (5.5)–(5.8) are not new integral representations for the classical Bernoulli polynomials and Euler polynomials. 6. Further observations and consequences By formula (2.3) of Theorem 2.1 for π‘₯ = 0, we obtain the relationship between the Apostol-Bernoulli numbers and the Hurwitz zeta function as follows: ( [ ) ( )] (βˆ’1)π‘›βˆ’1 𝑛! log πœ† log πœ† 𝑛 ℬ𝑛 (πœ†) = 𝜁 𝑛, 1 βˆ’ (βˆ’1) (6.1) + 𝜁 𝑛, . (2πœ‹π‘–)𝑛 2πœ‹π‘– 2πœ‹π‘– Letting πœ† = 1, 𝑛 β†’ 2𝑛 in (6.1), we at once produce the following famous Euler formula (see, e.g, [1, p. 807, 23.2.16]): (6.2)

𝜁(2𝑛) =

(βˆ’1)π‘›βˆ’1 (2πœ‹)2𝑛 𝐡2𝑛 . 2(2𝑛)!

On the other hand, we define zeta functions as (6.3)

𝛽(𝑛; πœ‰) =

∞ βˆ‘ π‘˜=0

(βˆ’1)π‘˜ , (2π‘˜ + 2πœ‰ + 1)𝑛

𝛽(𝑛) =

∞ βˆ‘ π‘˜=0

(βˆ’1)π‘˜ (2π‘˜ + 1)𝑛

(πœ‰ ∈ ℝ).

Setting πœ† = 𝑒2πœ‹π‘–πœ‰ in (2.9) of Theorem 2.2, we have [ ∞ [( ) ] βˆ‘ exp 𝑛+1 πœ‹ βˆ’ (2π‘˜ + 1)πœ‹π‘₯ 𝑖 2 β‹… 𝑛! 2πœ‹π‘–πœ‰ 2 ) = 𝑛+1 2πœ‹π‘–πœ‰π‘₯ ℰ𝑛 (π‘₯; 𝑒 πœ‹ 𝑒 (2π‘˜ + 2πœ‰ + 1)𝑛+1 π‘˜=0 (6.4) [( ) ]] ∞ βˆ‘ exp βˆ’ 𝑛+1 πœ‹ + (2π‘˜ + 1)πœ‹π‘₯ 𝑖 2 + . (2π‘˜ βˆ’ 2πœ‰ + 1)𝑛+1 π‘˜=0 ( ) Taking π‘₯ = 12 in (6.4) and noting that ℰ𝑛 (πœ†) = 2𝑛 ℰ𝑛 12 ; πœ† and (6.3), we readily obtain the following relationship between the Apostol-Euler numbers ℰ𝑛 (𝑒2πœ‹π‘–πœ‰ ) and the zeta function 𝛽(𝑛; πœ‰): (6.5)

ℰ𝑛 (𝑒2πœ‹π‘–πœ‰ ) =

2𝑛+1 𝑖𝑛 β‹… 𝑛! [𝛽(𝑛 + 1; πœ‰) + (βˆ’1)𝑛 𝛽(𝑛 + 1; βˆ’πœ‰)] πœ‹ 𝑛+1 π‘’πœ‹π‘–πœ‰

2206

QIU-MING LUO

or (6.6)

𝛽(2𝑛 + 1; πœ‰) + 𝛽(2𝑛 + 1; βˆ’πœ‰) =

(βˆ’1)𝑛 π‘’πœ‹π‘–πœ‰ ( πœ‹ )2𝑛+1 β„°2𝑛 (𝑒2πœ‹π‘–πœ‰ ). (2𝑛)! 2

Further putting πœ‰ = 0 in (6.6), we arrive directly at the following well-known formula (see [1, p. 807, 23.2.22]): (6.7)

𝛽(2𝑛 + 1) =

∞ βˆ‘ π‘˜=0

(βˆ’1)π‘˜ (βˆ’1)𝑛 ( πœ‹ )2𝑛+1 = 𝐸2𝑛 . 2𝑛+1 (2π‘˜ + 1) 2(2𝑛)! 2

We can also obtain the formulas (6.2) and (6.7) by (4.11) and (4.15), respectively. By Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4, respectively, we easily find the following integral representations for the Apostol-Bernoulli and Apostol-Euler numbers: (6.8) ℬ𝑛 (𝑒2πœ‹π‘–πœ‰ ) = βˆ’Ξ”π‘› (0; πœ‰) ( ) ( ) ∫ ∞ βˆ’2πœ‹π‘‘ βˆ’2πœ‹π‘‘ cos π‘›πœ‹ ) cosh(2πœ‹πœ‰π‘‘) + 𝑖 sin π‘›πœ‹ ) sinh(2πœ‹πœ‰π‘‘) π‘›βˆ’1 2 (1 βˆ’ 𝑒 2 (1 + 𝑒 𝑑 d𝑑, βˆ’π‘› cosh 2πœ‹π‘‘ βˆ’ 1 0 (6.9) 2𝑛 ℬ𝑛 (𝑒2πœ‹π‘–πœ‰ ) = βˆ’Ξ”π‘› (0; πœ‰) + (βˆ’2πœ‹)𝑛 ( π‘›πœ‹ ) ( ) ∫ 1 cos π‘›πœ‹ 2 (1 βˆ’ 𝑑) cosh(πœ‰ log 𝑑) βˆ’ 𝑖 sin 2 (1 + 𝑑) sinh(πœ‰ log 𝑑) (log 𝑑)π‘›βˆ’1 d𝑑, Γ— 𝑑2 βˆ’ 2𝑑 + 1 0 (6.10) ℰ𝑛 (𝑒2πœ‹π‘–πœ‰ ) = 2𝑛+2 π‘’βˆ’πœ‹π‘–πœ‰ ( π‘›πœ‹ ) ( ) ∫ ∞ cos π‘›πœ‹ 2 cosh πœ‹π‘‘ cosh(2πœ‹πœ‰π‘‘) + 𝑖 sin 2 cosh πœ‹π‘‘ sinh(2πœ‹πœ‰π‘‘) 𝑛 Γ— 𝑑 d𝑑, cosh 2πœ‹π‘‘ + 1 0 (6.11) 2𝑛+2 π‘’βˆ’πœ‹π‘–πœ‰ ℰ𝑛 (𝑒2πœ‹π‘–πœ‰ ) = (βˆ’1)𝑛 𝑛+1 ( π‘›πœ‹ ) ( πœ‹) ∫ 1 cos π‘›πœ‹ 2 cosh(2πœ‰ log 𝑑) βˆ’ 𝑖 sin 2 sinh(2πœ‰ log 𝑑) (log 𝑑)𝑛 d𝑑. Γ— 2+1 𝑑 0 Further setting πœ‰ = 0 in (6.8)–(6.11), respectively, we deduce the integral representations for the classical Bernoulli numbers and Euler numbers as follows (see, e.g., [18, pp. 28-32]): ( π‘›πœ‹ ) ∫ ∞ π‘‘π‘›βˆ’1 π‘’βˆ’πœ‹π‘‘ csch(πœ‹π‘‘) d𝑑 𝐡𝑛 = βˆ’π‘› cos 2 0 ( ) ∫ 1 3π‘›πœ‹ (log 𝑑)π‘›βˆ’1 2𝑛 d𝑑, = cos 2 (2πœ‹)𝑛 0 1βˆ’π‘‘ ∫ ( π‘›πœ‹ ) ∞ 𝐸𝑛 = 2𝑛+1 cos 𝑑𝑛 sech(πœ‹π‘‘) d𝑑 2 0 ( ) ∫ 3π‘›πœ‹ 2𝑛+2 1 (log 𝑑)𝑛 = cos d𝑑. 2 πœ‹ 𝑛+1 0 1 + 𝑑2

FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS

2207

Recently, Garg et al. [9] gave an extension of Apostol’s formula (4.7) as (6.12)

ℬ𝑛 (π‘Ž; πœ†) = βˆ’π‘›Ξ¦(πœ†, 1 βˆ’ 𝑛, π‘Ž)

(𝑛 ∈ β„•, πœ† ∈ β„‚, βˆ£πœ†βˆ£ ≀ 1, π‘Ž ∈ β„‚ βˆ– β„€βˆ’ 0 ).

By (1.4) and the binomial theorem, we have ∞ βˆ‘ 𝑛=0

(6.13)

ℰ𝑛 (π‘Ž; πœ†)

∞ βˆ‘ 2π‘’π‘Žπ‘§ 𝑧𝑛 = 𝑧 =2 (βˆ’πœ†)π‘˜ 𝑒(π‘˜+π‘Ž)𝑧 𝑛! πœ†π‘’ + 1 π‘˜=0 [ ∞ ] ∞ 𝑛 βˆ‘ βˆ‘ π‘˜ 𝑛 𝑧 = (βˆ’πœ†) (π‘˜ + π‘Ž) 2 𝑛! 𝑛=0 π‘˜=0 [ ] ∞ ∞ βˆ‘ βˆ‘ (βˆ’πœ†)π‘˜ 𝑧𝑛 = . 2 (π‘˜ + π‘Ž)βˆ’π‘› 𝑛! 𝑛=0 π‘˜=0

Hence, we also obtain the following interesting relationship between the ApostolEuler polynomials and the Hurwitz-Lerch zeta function: (6.14)

ℰ𝑛 (π‘Ž; πœ†) = 2Ξ¦(βˆ’πœ†, βˆ’π‘›, π‘Ž)

(𝑛 ∈ β„•, πœ† ∈ β„‚, βˆ£πœ†βˆ£ ≀ 1, π‘Ž ∈ β„‚ βˆ– β„€βˆ’ 0 ).

We can prove Theorem 2.1 and Theorem 2.2, respectively, by applying the relationships (6.12) and (6.14) in conjunction with Lerch’s functional equation (4.8). The same as with the elementary series (4.12), we may also prove Theorem 4.1 and Theorem 4.2, respectively. References 1. M. Abramowitz, I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, Fourth Printing, Washington, D.C., 1965. MR757537 (85j:00005a) 2. T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161–167. MR0043843 (13:328b) 3. L. Carlitz, Multiplication formulas for products of Bernoulli and Euler polynomials, Pacific J. Math., 9 (1959), 661–666. MR0108601 (21:7317) 4. M. Cenkci, M. Can, Some results on π‘ž-analogue of the Lerch zeta function, Adv. Stud. Contemp. Math., 12 (2006), 213–223. MR2213080 (2007c:11098) 5. J. Choi, P. J. Anderson, H. M. Srivastava, Some π‘ž-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order 𝑛, and the multiple Hurwitz zeta function, Appl. Math. Comput. (2007), 199 (2008), 723–737. MR2420600 6. D. CvijoviΒ΄ c, J. Klinowski, New formulae for the Bernoulli and Euler polynomials at rational arguments, Proc. Amer. Math. Soc., 123 (1995), 1527–1535. MR1283544 (95g:11085) 7. D. CvijoviΒ΄ c, The Haruki-Rassias and related integral representations of the Bernoulli and Euler polynomials, J. Math. Anal. Appl., 337 (2008), 169–173. MR2356063 (2008i:33028) 8. A. ErdΒ΄ elyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, Volumes I–III, McGraw-Hill, New York, 1953–1955. MR0698779 (84h:33001a); MR0698780 (84h:330016); MR0066496 (16:586c) 9. M. Garg, K. Jain, H. M. Srivastava, Some relationships between the generalized ApostolBernoulli polynomials and Hurwitz-Lerch zeta functions, Integral Transforms Spec. Funct., 17 (2006), no. 11, 803–815. MR2263956 (2007h:11028) 10. H. Haruki, T. M. Rassias, New integral representations for Bernoulli and Euler polynomials, J. Math. Anal. Appl., 175 (1993), 81–90. MR1216746 (94e:39016) 11. D. H. Lehmer, A new approach to Bernoulli polynomials, American Math. Monthly, 95 (1988), 905–911. MR979133 (90c:11014) 12. R. Lipschitz, Untersuchung der Eigenschaften einer Gattung von unendlichen Reihen, J. Reine und Angew. Math. CV (1889), 127–156. 13. Q.-M. Luo, H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290–302. MR2142419 (2006e:33012)

2208

QIU-MING LUO

14. Q.-M. Luo, Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10 (2006), 917–925. MR2229631 (2007c:33005) 15. Q.-M. Luo, H. M. Srivastava, Some relationships between the Apostol-Bernoulli and ApostolEuler polynomials, Comput. Math. Appl., 51 (2006), 631–642. MR2207447 (2006k:42050) 16. Q.-M. Luo, An explicit relationship between the generalized Apostol-Bernoulli and ApostolEuler polynomials associated with πœ†βˆ’Stirling numbers of the second kind, Houston J. Math., accepted in press. 17. Q.-M. Luo, The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, Integral Transforms Spec. Funct., accepted in press. 18. W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Third Enlarged Edition, Springer-Verlag, New York, 1966. MR0232968 (38:1291) 19. P. C. Pasles, W. A. Pribitkin, A generalization of the Lipschitz summation formula and some applications, Proc. Amer. Math. Soc., 129 (2001), 3177–3184. MR1844990 (2002e:11059) 20. H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000), 77–84. MR1757780 (2001f:11033) 21. H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001. MR1849375 (2003a:11107) 22. W. Wang, C. Jia, T. Wang, Some results on Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl., 55 (2008), 1322–1332. MR2394371 Department of Mathematics, East China Normal University, Shanghai 200241, People’s Republic of China –and– Department of Mathematics, Jiaozuo University, Henan Jiaozuo 454003, People’s Republic of China E-mail address: [email protected] E-mail address: [email protected]