Home
Add Document
Sign In
Create An Account
Functions of Matrices - Semantic Scholar
Download PDF
Comment
Report
16 Downloads
190 Views
Functions of Matrices: Theory and Computation Nicholas J. Higham March 2008
MIMS EPrint: 2008.39
Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester
Reports available from: And by contacting:
http://www.manchester.ac.uk/mims/eprints The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK
ISSN 1749-9097
Contents
List of Figures
xiii
List of Tables
xv
Preface
xvii
1 Theory of Matrix Functions 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Definitions of f (A) . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Jordan Canonical Form . . . . . . . . . . . . . . . . . . . 1.2.2 Polynomial Interpolation . . . . . . . . . . . . . . . . . . 1.2.3 Cauchy Integral Theorem . . . . . . . . . . . . . . . . . . 1.2.4 Equivalence of Definitions . . . . . . . . . . . . . . . . . 1.2.5 Example: Function of Identity Plus Rank-1 Matrix . . . 1.2.6 Example: Function of Discrete Fourier Transform Matrix 1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Nonprimary Matrix Functions . . . . . . . . . . . . . . . . . . . 1.5 Existence of (Real) Matrix Square Roots and Logarithms . . . . 1.6 Classification of Matrix Square Roots and Logarithms . . . . . . 1.7 Principal Square Root and Logarithm . . . . . . . . . . . . . . . 1.8 f (AB) and f (BA) . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9 Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 A Brief History of Matrix Functions . . . . . . . . . . . . . . . . 1.11 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
1 1 2 2 4 7 8 8 10 10 14 16 17 20 21 23 26 27 29
2 Applications 2.1 Differential Equations . . . . . . . . . . . . . . . . . . . . . 2.1.1 Exponential Integrators . . . . . . . . . . . . . . . . 2.2 Nuclear Magnetic Resonance . . . . . . . . . . . . . . . . . 2.3 Markov Models . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Control Theory . . . . . . . . . . . . . . . . . . . . . . . . 2.5 The Nonsymmetric Eigenvalue Problem . . . . . . . . . . . 2.6 Orthogonalization and the Orthogonal Procrustes Problem 2.7 Theoretical Particle Physics . . . . . . . . . . . . . . . . . 2.8 Other Matrix Functions . . . . . . . . . . . . . . . . . . . . 2.9 Nonlinear Matrix Equations . . . . . . . . . . . . . . . . . 2.10 Geometric Mean . . . . . . . . . . . . . . . . . . . . . . . . 2.11 Pseudospectra . . . . . . . . . . . . . . . . . . . . . . . . . 2.12 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
35 35 36 37 37 39 41 42 43 44 44 46 47 47
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
vii
Copyright ©2008 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed. From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham. This book is available for purchase at www.siam.org/catalog.
viii
Contents 2.13 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.14 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.14.1 Boundary Value Problems . . . . . . . . . . . . . . . . . . . 2.14.2 Semidefinite Programming . . . . . . . . . . . . . . . . . . . 2.14.3 Matrix Sector Function . . . . . . . . . . . . . . . . . . . . . 2.14.4 Matrix Disk Function . . . . . . . . . . . . . . . . . . . . . . 2.14.5 The Average Eye in Optics . . . . . . . . . . . . . . . . . . . 2.14.6 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . 2.14.7 Bregman Divergences . . . . . . . . . . . . . . . . . . . . . . 2.14.8 Structured Matrix Interpolation . . . . . . . . . . . . . . . . 2.14.9 The Lambert W Function and Delay Differential Equations 2.15 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Conditioning 3.1 Condition Numbers . . . . . . . . . . . . . . . . . 3.2 Properties of the Fr´echet Derivative . . . . . . . . 3.3 Bounding the Condition Number . . . . . . . . . 3.4 Computing or Estimating the Condition Number 3.5 Notes and References . . . . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
4 Techniques for General Functions 4.1 Matrix Powers . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Polynomial Evaluation . . . . . . . . . . . . . . . . . . . 4.3 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Rational Approximation . . . . . . . . . . . . . . . . . . 4.4.1 Best L∞ Approximation . . . . . . . . . . . . . . 4.4.2 Pad´e Approximation . . . . . . . . . . . . . . . . 4.4.3 Evaluating Rational Functions . . . . . . . . . . . 4.5 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . 4.6 Schur Decomposition and Triangular Matrices . . . . . . 4.7 Block Diagonalization . . . . . . . . . . . . . . . . . . . . 4.8 Interpolating Polynomial and Characteristic Polynomial 4.9 Matrix Iterations . . . . . . . . . . . . . . . . . . . . . . 4.9.1 Order of Convergence . . . . . . . . . . . . . . . . 4.9.2 Termination Criteria . . . . . . . . . . . . . . . . 4.9.3 Convergence . . . . . . . . . . . . . . . . . . . . . 4.9.4 Numerical Stability . . . . . . . . . . . . . . . . . 4.10 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 4.11 Bounds for kf (A)k . . . . . . . . . . . . . . . . . . . . . 4.12 Notes and References . . . . . . . . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
71 . 71 . 72 . 76 . 78 . 79 . 79 . 80 . 81 . 84 . 89 . 89 . 91 . 91 . 92 . 93 . 95 . 99 . 102 . 104 . 105
5 Matrix Sign Function 5.1 Sensitivity and Conditioning . 5.2 Schur Method . . . . . . . . . 5.3 Newton’s Method . . . . . . . 5.4 The Pad´e Family of Iterations 5.5 Scaling the Newton Iteration .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . . .
55 55 57 63 64 69 70
. . . . . .
. . . . .
. . . . . .
48 48 48 48 48 49 50 50 50 50 51 51 52
. . . . . .
. . . . .
. . . . . .
. . . . . . . . . . . . .
. . . . .
. . . . .
Copyright ©2008 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed. From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham. This book is available for purchase at www.siam.org/catalog.
107 109 112 113 115 119
ix
Contents 5.6 5.7 5.8 5.9 5.10
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
121 123 125 128 129 131
6 Matrix Square Root 6.1 Sensitivity and Conditioning . . . . . . . . . 6.2 Schur Method . . . . . . . . . . . . . . . . . 6.3 Newton’s Method and Its Variants . . . . . . 6.4 Stability and Limiting Accuracy . . . . . . . 6.4.1 Newton Iteration . . . . . . . . . . . 6.4.2 DB Iterations . . . . . . . . . . . . . 6.4.3 CR Iteration . . . . . . . . . . . . . . 6.4.4 IN Iteration . . . . . . . . . . . . . . 6.4.5 Summary . . . . . . . . . . . . . . . . 6.5 Scaling the Newton Iteration . . . . . . . . . 6.6 Numerical Experiments . . . . . . . . . . . . 6.7 Iterations via the Matrix Sign Function . . . 6.8 Special Matrices . . . . . . . . . . . . . . . . 6.8.1 Binomial Iteration . . . . . . . . . . . 6.8.2 Modified Newton Iterations . . . . . 6.8.3 M-Matrices and H-Matrices . . . . . 6.8.4 Hermitian Positive Definite Matrices 6.9 Computing Small-Normed Square Roots . . 6.10 Comparison of Methods . . . . . . . . . . . . 6.11 Involutory Matrices . . . . . . . . . . . . . . 6.12 Notes and References . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . .
133 133 135 139 144 144 145 146 146 147 147 148 152 154 154 157 159 161 162 164 165 166 168
7 Matrix pth Root 7.1 Theory . . . . . . . . . . 7.2 Schur Method . . . . . . 7.3 Newton’s Method . . . . 7.4 Inverse Newton Method . 7.5 Schur–Newton Algorithm 7.6 Matrix Sign Method . . . 7.7 Notes and References . . Problems . . . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
173 173 175 177 181 184 186 187 189
Polar Decomposition Approximation Properties . . . . . . . . . . . . . Sensitivity and Conditioning . . . . . . . . . . . . Newton’s Method . . . . . . . . . . . . . . . . . . Obtaining Iterations via the Matrix Sign Function The Pad´e Family of Methods . . . . . . . . . . . . Scaling the Newton Iteration . . . . . . . . . . . . Terminating the Iterations . . . . . . . . . . . . . Numerical Stability and Choice of H . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
193 197 199 202 202 203 205 207 209
8 The 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8
Terminating the Iterations . . . . . . . Numerical Stability of Sign Iterations . Numerical Experiments and Algorithm Best L∞ Approximation . . . . . . . . Notes and References . . . . . . . . . . Problems . . . . . . . . . . . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . .
. . . . . . . .
. . . . . . . .
Copyright ©2008 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed. From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham. This book is available for purchase at www.siam.org/catalog.
x
Contents 8.9 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 8.10 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9 Schur–Parlett Algorithm 9.1 Evaluating Functions of the Atomic Blocks . . 9.2 Evaluating the Upper Triangular Part of f (T ) 9.3 Reordering and Blocking the Schur Form . . . 9.4 Schur–Parlett Algorithm for f (A) . . . . . . . 9.5 Preprocessing . . . . . . . . . . . . . . . . . . 9.6 Notes and References . . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
221 221 225 226 228 230 231 231
10 Matrix Exponential 10.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . 10.2 Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Scaling and Squaring Method . . . . . . . . . . . . . . . 10.4 Schur Algorithms . . . . . . . . . . . . . . . . . . . . . . 10.4.1 Newton Divided Difference Interpolation . . . . . 10.4.2 Schur–Fr´echet Algorithm . . . . . . . . . . . . . . 10.4.3 Schur–Parlett Algorithm . . . . . . . . . . . . . . 10.5 Numerical Experiment . . . . . . . . . . . . . . . . . . . 10.6 Evaluating the Fr´echet Derivative and Its Norm . . . . . 10.6.1 Quadrature . . . . . . . . . . . . . . . . . . . . . 10.6.2 The Kronecker Formulae . . . . . . . . . . . . . . 10.6.3 Computing and Estimating the Norm . . . . . . . 10.7 Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . . 10.7.1 Hermitian Matrices and Best L∞ Approximation 10.7.2 Essentially Nonnegative Matrices . . . . . . . . . 10.7.3 Preprocessing . . . . . . . . . . . . . . . . . . . . 10.7.4 The ψ Functions . . . . . . . . . . . . . . . . . . . 10.8 Notes and References . . . . . . . . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
233 233 238 241 250 250 251 251 252 253 254 256 258 259 259 260 261 261 262 265
11 Matrix Logarithm 11.1 Basic Properties . . . . . . . . . . . . . . . . . . . 11.2 Conditioning . . . . . . . . . . . . . . . . . . . . . 11.3 Series Expansions . . . . . . . . . . . . . . . . . . 11.4 Pad´e Approximation . . . . . . . . . . . . . . . . 11.5 Inverse Scaling and Squaring Method . . . . . . . 11.5.1 Schur Decomposition: Triangular Matrices 11.5.2 Full Matrices . . . . . . . . . . . . . . . . 11.6 Schur Algorithms . . . . . . . . . . . . . . . . . . 11.6.1 Schur–Fr´echet Algorithm . . . . . . . . . . 11.6.2 Schur–Parlett Algorithm . . . . . . . . . . 11.7 Numerical Experiment . . . . . . . . . . . . . . . 11.8 Evaluating the Fr´echet Derivative . . . . . . . . . 11.9 Notes and References . . . . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
269 269 272 273 274 275 276 278 279 279 279 280 281 283 284
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . . .
. . . . . . . . . . . . . .
Copyright ©2008 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed. From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham. This book is available for purchase at www.siam.org/catalog.
xi
Contents 12 Matrix Cosine and Sine 12.1 Basic Properties . . . . . . . . . . . . . . . . 12.2 Conditioning . . . . . . . . . . . . . . . . . . 12.3 Pad´e Approximation of Cosine . . . . . . . . 12.4 Double Angle Algorithm for Cosine . . . . . 12.5 Numerical Experiment . . . . . . . . . . . . 12.6 Double Angle Algorithm for Sine and Cosine 12.6.1 Preprocessing . . . . . . . . . . . . . 12.7 Notes and References . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
287 287 289 290 290 295 296 299 299 300
13 Function of Matrix Times Vector: f (A)b 13.1 Representation via Polynomial Interpolation 13.2 Krylov Subspace Methods . . . . . . . . . . 13.2.1 The Arnoldi Process . . . . . . . . . 13.2.2 Arnoldi Approximation of f (A)b . . . 13.2.3 Lanczos Biorthogonalization . . . . . 13.3 Quadrature . . . . . . . . . . . . . . . . . . . 13.3.1 On the Real Line . . . . . . . . . . . 13.3.2 Contour Integration . . . . . . . . . . 13.4 Differential Equations . . . . . . . . . . . . . 13.5 Other Methods . . . . . . . . . . . . . . . . 13.6 Notes and References . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
301 301 302 302 304 306 306 306 307 308 309 309 310
14 Miscellany 14.1 Structured Matrices . . . . . . . . . . . . . . . . . . . 14.1.1 Algebras and Groups . . . . . . . . . . . . . . 14.1.2 Monotone Functions . . . . . . . . . . . . . . 14.1.3 Other Structures . . . . . . . . . . . . . . . . 14.1.4 Data Sparse Representations . . . . . . . . . . 14.1.5 Computing Structured f (A) for Structured A 14.2 Exponential Decay of Functions of Banded Matrices . 14.3 Approximating Entries of Matrix Functions . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
313 313 313 315 315 316 316 317 318
A Notation B Background: Definitions and Useful Facts B.1 Basic Notation . . . . . . . . . . . . . . . . . B.2 Eigenvalues and Jordan Canonical Form . . B.3 Invariant Subspaces . . . . . . . . . . . . . . B.4 Special Classes of Matrices . . . . . . . . . . B.5 Matrix Factorizations and Decompositions . B.6 Pseudoinverse and Orthogonality . . . . . . B.6.1 Pseudoinverse . . . . . . . . . . . . . B.6.2 Projector and Orthogonal Projector . B.6.3 Partial Isometry . . . . . . . . . . . . B.7 Norms . . . . . . . . . . . . . . . . . . . . . B.8 Matrix Sequences and Series . . . . . . . . . B.9 Perturbation Expansions for Matrix Inverse
319 . . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
Copyright ©2008 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed. From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham. This book is available for purchase at www.siam.org/catalog.
. . . . . . . . . . . .
321 321 321 323 323 324 325 325 326 326 326 328 328
xii
Contents B.10 B.11 B.12 B.13 B.14 B.15 B.16
Sherman–Morrison–Woodbury Formula Nonnegative Matrices . . . . . . . . . . Positive (Semi)definite Ordering . . . . Kronecker Product and Sum . . . . . . Sylvester Equation . . . . . . . . . . . Floating Point Arithmetic . . . . . . . Divided Differences . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
329 329 330 331 331 331 332 334
C Operation Counts
335
D Matrix Function Toolbox
339
E Solutions to Problems
343
Bibliography
379
Index
415
Copyright ©2008 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed. From "Functions of Matrices: Theory and Computation" by Nicholas J. Higham. This book is available for purchase at www.siam.org/catalog.
Recommend Documents
Balanced Matrices - Semantic Scholar
Halfspace Matrices - Semantic Scholar
On properties of cell matrices - Semantic Scholar
×
Report Functions of Matrices - Semantic Scholar
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Login with Facebook
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & Close