GCE Mathematics FP3 0979-01

Report 3 Downloads 79 Views
WJEC 2014 Online Exam Review GCE Mathematics FP3 0979-01 All Candidates' performance across questions

Question Title 1 2 3 4 5 6 7

N 222 223 223 223 220 221 221

Mean 5.9 11.4 9 5.9 3 10 8

SD 2.1 3.5 3 2.5 2.6 3.2 2.5

Max Mark 9 14 11 8 9 13 11

FF 65.4 81.4 81.6 73.2 33.6 76.7 73.2

Attempt % 99.5 100 100 100 98.7 99.1 99.1

GCE Mathematics FP3 0979-01 7

73.2

Question

6

76.7

5

33.6

4

73.2

3

81.6

2

81.4

1

65.4 0

10

20

30

40

50

60

Facility Factor %

70

80

90

100

1

5a 6a 7

2 1.

(a) Starting with the exponential definition of sinh x, show that

(

)

sinh –1 x = ln x + x 2 + 1 .

[4]

(b) Solve the equation

cosh2x = 2sinh x + 5,

(

)

giving your answers in the form ln a + b where a, b are integers.

© WJEC CBAC Ltd.

(0979-01)

[5]

Question number

Leave Blank Gadeivc/yn wag

Rhify Cwestiwn

J/L

^tr

v - / - 2. ifo -D

- 2.

V

3 5.

The integral In is defined, for n x 0, by

In = (a) Show that, for n x 2,

1

∫xe 0

n – x 2 dx.

( )

–1 I n = n – 1 I n–2 – e . 2 2

© WJEC CBAC Ltd.

(0979-01)

[3]

Question number Rhify Cwestiwn

Leave Blank Gadewctyn wag

d\j ^-— C_/fT>£

•fr—^

X

e

ci-

•i.

-i

^^TT"

O -.

3 6.

The curve C has polar equation

r = sinθ + cosθ, 0 X θ X π . 2 (a) Find the polar coordinates of the point at which the tangent is parallel to the initial line. [8]

© WJEC CBAC Ltd.

(0979-01)

Leave Blank Gadewch yn wag

Question number Rhify Cwestiwn

- o

v

a

T

t -V riv\

-V c 0

m 6

^

0

a.

0

^

-V 0011382,0

3 7.

(a) Using the substitution x = asinhθ, show that



()

2 2  2  x 2 + a 2 dx = a  sinh –1 x + x x 2+ a  + constant . 2  a a 

[5]

(b) The equation of the curve C is

y = x2, 0 X x X 1. Find the arc length of C.

© WJEC CBAC Ltd.

[6]

(0979-01)

/

Question number Rhify Cwestiwn

Leave Blank GadewcA yn wag

x 4 )

* \

(4 5 = 0 - ^3

to