IntroducPon Results Results Results Conclusion

Report 11 Downloads 673 Views
Graduate   Category:  Life  Sciences   Degree  Level:PhD   Abstract  ID#  823

  ScanDrop  Diagnos1c  Approach  for  Detec1on  of  Bacterial  Infec1on  Markers   Pooja  Sabhachandani1,  Saheli  Sarkar1,  Noa  Cohen1,  Elizabeth  Hirsch2,  James  Kirby3  and  Tania  Konry1  

1Department  of  Pharmaceu1cal  Sciences,  School  of  Pharmacy,  Bouve  School  of  Health  Sciences,  2Department  of  Pharmacy  and  Health  system  sciences,  School  of  Pharmacy,  Bouve  School  of  Health  Sciences    

Abstract  

3Department  of  Pathology,  Beth  Israel  Deaconess  Medical  Center,  Boston  MA  

Incidence  of  bacterial  infecAons  in  the  urinary  tract  is  very  commonly  encountered  with  about  8  million  people  affected  annually.  EffecAveness  of  the  therapeuAc  regimen  depends  on  microbe  diagnosAc  methods  and  the  tradiAonal  ones  currently  employed  are  ineffecAve  in  efficiently  detecAng  specific  strains  in  less   than  48-­‐72  hours.  Strain-­‐specific  treatment  would  be  ideal  in  light  of  the  increasing  broad-­‐spectrum  anAbioAc  resistance,  but  advanced  diagnosAc  techniques  that  are  currently  in  place  are  incapable  of  speedy  detecAon,  important  for  administraAon  of  appropriate  therapeuAcs.    Also,  quick  response  tests  are   incapable  of  detecAng  resistance  profiles,  which  determine  phenotypic  suscepAbility  to  the  drug..  To  overcome  these  drawbacks,  we  have  developed  a  microfluidic-­‐based  diagnosAc  technology  called  ScanDrop,  which  will  effecAvely  detect  specific  pathogens  directly  from  paAent  samples  along  with  specific  cytokines   produced  during  a  Urinary  Tract  InfecAon  (UTI).  Samples  along  with  detecAon  reagents  are  compartmentalized  in  Pico  liter  droplets,  which  act  as  mini-­‐reactors.  FuncAonalized  bead-­‐based  assays  are  incorporated  in  these  droplets  for  simultaneous  detecAon  of  specific  pro-­‐inflammatory  cytokines  and  capture  of  live   microbial   pathogens   on   the   bead.   We   have   opAmized   the   ScanDrop   system   for   concurrent   detecAon   of   Il-­‐6   and   E.   coli   in   urine   samples   for   studies   involving   detecAon   of   mulAple   clinically   relevant   pathogens.   We   have   also   established   anAbioAc   suscepAbility   and   sensiAvity   profiles   for   some   clinically   relevant   anAbioAcs  on  single  bacterial  level  in  droplets.    Our  system  thus  provides  a  robust  and  high  throughput  method  to  simultaneously  detect  microbes  and  cytokines  at  clinically  relevant  levels  detected  in  UTIs  for  Amely  prognosis  and  swiZ  treatment.  

IntroducAon  

Results  

Bacterial  Urinary  Tract  InfecAons  (UTIs)  involve  both,  lower  and  upper  urinary  tract  and       if  not  treated  promptly,  these  infecAons  may  lead  to  chronic  pyelonephriAs  and   Time  –lapse  imaging  of  proliferaAon  of  single  bacteria  in  droplet  plaborm  with  incorporaAon  of   bacterial  sepsis  which  may  be  life  threatening.  Current  advanced  diagnosAc  methods   bead-­‐based  assay  to  capture  bacteria   for  these  infecAons  sAll  require  pre-­‐amplificaAon  of  culture,  which  makes  it  tedious   and  Ame  consuming.  Also,  these  techniques  rely  on  complicated  instruments  which  are   expensive,  bulky  and  require  skilled  professional  to  operate.  Therefore,  we  have   proposed  a  novel  technology  called  ScanDrop,  which  addresses  these  shortcomings.   ScanDrop  provides  highly  sensiAve  and  rapid  diagnosAcs  from  direct  paAent  samples,   without  any  need  for  sample  pre-­‐amplificaAon.  This  technology  is  cost  effecAve  with   disposable  one-­‐Ame  use  microfluidic  chips  and  can  be  employed  with  portable   instruments  .  We  combine  our  ScanDrop  technology  with  our  bead-­‐based  sensor   technology  for  concurrent  capture  of  bacteria  in  samples  at  clinically  relevant   concentraAons(103  to  
Recommend Documents