KU Leuven - Semantic Scholar

Report 3 Downloads 120 Views
Designing reliable analog circuits in an unreliable world Georges Gielen ESAT–MICAS, KU Leuven gielen@esat kuleuven be [email protected]

© G. Gielen, KU Leuven

INESC Jan 2013

1

KU Leuven Rector: M. Waer ± 42000 Students

Faculty of Engineering Dean: M. Steyaert ± 3500 Students

Electrical Engineering: ESAT

Head: G. Gielen PSI P.Suetens P.Wambacq L.Van Eycken L.Van Gool D.Van Compernolle H.Vanhamme F. Maes INESC Jan 2013

± 350 BSc/ 200 MSc/ 350PhD

SCD J.Vandewalle B.De Moor S.Van Huffel M.Moonen A.Barbé J.Engelen B.Preneel I. Verbauwhede Y. Moreau

MICAS

TELEMIC

ELECTA

G. Gielen M. Steyaert R. Puers W. Dehaene P. Reynaert M. Verhelst

A.Van de Cappelle E.Van Lil B.Nauwerlaers G.Vandenbosch D. Schreurs S. Pollin

R.Belmans G.Deconinck J. Driesen D. Van Hertem

© G. Gielen, KU Leuven

2

1

MICAS: the numbers http://www.esat.kuleuven.be/micas/

 research focus

on IC design, incl CAD incl.

design methodologies & CAD 13%

 6 full-time professors

• 3 are Fellow of IEEE • ~55 Ph.D. students (@ ESAT) • ~25 Ph.D. students (@ IMEC)

biomedical and MEMS 24%

high-speed analog & mm-wave

 4 affiliated professors

low-power digital & memories

20% analog & mixed-signal

 9.5 tech/admin staff

20%

22%

 created 6 spinoffs in last 14 years INESC Jan 2013

© G. Gielen, KU Leuven

3

Contents

 Motivation  Aging modeling  Reliability simulation  Reliability-aware Reliability aware or resilient design  Conclusions INESC Jan 2013

© G. Gielen, KU Leuven

4

2

Evolution in technology  traditional scaling philosophy:

INESC Jan 2013

more for less

© G. Gielen, KU Leuven

5

Result of scaling  same function, smaller, faster, less power

INESC Jan 2013

© G. Gielen, KU Leuven

6

3

Good news from Intel & co

CMOS scaling will continue for at least two more technology nodes beyond 32 nm !! INESC Jan 2013

© G. Gielen, KU Leuven

7

Variability line edge roughness (LER)

random dopant fluctuations (RDF)

[Frank, IBM]

INESC Jan 2013

© G. Gielen, KU Leuven

8

4

Analog circuits and matching

 mismatch inversely proportional to area :

 2 ( VT ) 

AV2T WL

2 2 P  24 Cox AVT 0 f DR

Speed  Accuracy 2 Power [Vittoz AICSP 1994]

 techn const

[Kinget CICC 1996]

© G. Gielen, KU Leuven

INESC Jan 2013

9

Benefit from process scaling ?

D

D

A

A

analog does not really become smaller !!  no real cost benefit for analog INESC Jan 2013

© G. Gielen, KU Leuven

10

5

Analog design versus scaling  supply voltage drops • limits signal range

 intrinsic gain drops : Aint  INESC Jan 2013

gm g DS © G. Gielen, KU Leuven

11

ITRS

INESC Jan 2013

© G. Gielen, KU Leuven

12

6

Importance of reliability 





guarantee product lifetime  e.g. safety-critical applications in an increasingly unrealible context  technology process  environment without huge overdesign

© G. Gielen, KU Leuven

INESC Jan 2013

13

IC reliability  spatial unreliability

• manufacturing process variations • random defects

INESC Jan 2013

© G. Gielen, KU Leuven

14

7

IC reliability  spatial unreliability

• manufacturing process variations • random defects  temporal unreliability

• aging effects » HCI, NBTI/PBTI,

TDDB

© G. Gielen, KU Leuven

INESC Jan 2013

15

IC reliability  spatial unreliability

• manufacturing process variations • random d defects d f  temporal unreliability

• aging effects  dynamic unreliability

• workload dependence • temperature variations • EMC INESC Jan 2013

© G. Gielen, KU Leuven

16

8

Contents

 Motivation  Aging modeling  Reliability simulation  Reliability-aware Reliability aware or resilient design  Conclusions © G. Gielen, KU Leuven

INESC Jan 2013

17

Device aging effects  Hot Carrier Degradation  Time Dependent Dielectric

Breakdown  Bias Temperature Instability  circuit perf degrades with time :

VT  β rout 

 VTH  At n A  f (V DS , VGS , T , L , W ,...) [Maricau ESREF 2008] INESC Jan 2013

© G. Gielen, KU Leuven

18

9

The effect of CMOS scaling  > 65nm CMOS

• ‘large’ transistors • some effects can be considered

deterministic: NBTI, (PBTI), HCI

• some effects are statistical: TDDB, variability

 < 65nm CMOS

• PBTI besides NBTI • `atomic’ scale transistor • everything becomes stochastic

[Maricau IEEE JETCAS 2011] [Maricau DATE 2011] INESC Jan 2013

© G. Gielen, KU Leuven

19

What do we need for analog circuits?  compact models for all important unreliability effects

• include all important factors

Analog

» e.g. e g W,L, W L Vgs, Vgs Vds, Vds T, T …

• include interaction effects » e.g. Vds-Vgs for HCI

• cover a broad continuous range of values » e.g. g Vgs g = [0V [ … 1.5V], ],

Digital

W=[0.08m-10m]

• model time-varying stress effects » e.g. Vgs(t)= VGS + sin(0.5,1e6) INESC Jan 2013

© G. Gielen, KU Leuven

20

10

Hot Carrier degradation  channel hot carrier • a well known phenomenon (>25 years) • interface traps due to impact ionization near drain • dominant for nMOS in saturation » high VDS » high VGS • impact at device level » VTH, , go

n+

n+

[Wang, TDMR 2007]

N IT (t )  C exp(1VGS ) exp( 2VGS )t 0.45 © G. Gielen, KU Leuven

INESC Jan 2013

21

Hot Carrier degradation model

 ESAT-MICAS model

• • • •

[Maricau ESREF 2008]

based on Reaction-Diffusion (RD) model includes all important transistor parameters (Vgs, Vds, L, T) DC and AC voltage stress parameter set to be extracted for every process

INESC Jan 2013

© G. Gielen, KU Leuven

22

11

HCI model verification

[Maricau ESREF2008] INESC Jan 2013

© G. Gielen, KU Leuven

23

Negative Bias Temperature Instability  recent phenomenon  NBTI important for pMOS

• [also PBTI for f nMOS below 65 nm]  traps due to electro-chemical reaction with SiH  large VGS  temperature activated  relaxation phenomenon

• interface traps: permanent part • oxide traps: recoverable part  impact at device level • VTH, , go INESC Jan 2013

p+

p+

[Wang, TDMR 2007]

N IT  C exp(

© G. Gielen, KU Leuven

VGS



)t 0.18 24

12

Bias Temperature Instability model

[Maricau, ESSDERC 2012] INESC Jan 2013

© G. Gielen, KU Leuven

25

NBTI model verification

[Maricau Electronics Letters 2010] INESC Jan 2013

© G. Gielen, KU Leuven

26

13

Transistor aging in sub-65nm CMOS  aging effects become worse, even with high-k

• EOT reduces » Eeff increases i

• new materials (high-k) » PBTI • SiO2 Interfacial Layer » NBTI, HC, TDDB remains

© G. Gielen, KU Leuven

INESC Jan 2013

27

Stochastic BTI model • individual charges can change VTH

• Poisson distribution for

number of trapped charges (N=mean number of traps) • exponential distribution for the impact of an individual defect ( = average impact) • VTH=f(Vgs,T) • V VTH)=f(1/(WL)) ) f(1/(WL))

[Maricau DATE 2011] INESC Jan 2013

© G. Gielen, KU Leuven

28

14

Time-Dependent Dielectric Breakdown  PMOS and NMOS  statistical phenomenon  gate t currentt iincreases  high VGS  soft BD – Ig noise  hard BD – k gate

resistance

© G. Gielen, KU Leuven

INESC Jan 2013

29

TDDB model  soft breakdown

• example :

65nm technology » 1V gate stress » 10 year stress time • time to SBD follows a Weibull distribution » SBD=1.2 » =-30

F ( t SBD [Maricau DATE 2011] INESC Jan 2013

  t )  1  exp    SBD    SBD © G. Gielen, KU Leuven

  



   30

15

Soft breakdown example  aging

creates spread • 65nm

technology (1.7nm tox) • 0.8V gate stress • PDF after 0,1,10 year stress time [Maricau DATE 2011] INESC Jan 2013

© G. Gielen, KU Leuven

31

Contents

 Motivation  Aging modeling  Reliability simulation  Reliability-aware Reliability aware or resilient design  Conclusions INESC Jan 2013

© G. Gielen, KU Leuven

32

16

Commercial tools  transistor reliability analysis: □ RelXpert (now part of Cadence) □ Mentor Graphics p ELDO Reliabilityy Simulator □ Synopsys HSPICE MOSRA

The backbone of these tools is developed in the nineties and is no longer adequate! INESC Jan 2013

© G. Gielen, KU Leuven

33

Transistor model for aging

[Maricau TCAD2011 & DATE2011] INESC Jan 2013

© G. Gielen, KU Leuven

34

17

Deterministic reliability simulation

 VTH 

qN IT C ox

g o  1    VTH  0 I DS 0

 eff 

1   VGS

0  VTH

1    VTH 

[Maricau DATE2009 & TCAD2010] INESC Jan 2013

© G. Gielen, KU Leuven

35

Example: LC-VCO  5 GHz and low phase noise

• high g output p swing g • high LC-tank Q-factor • protective gate capacitors (DC-bias not shown) • UMC 90nm

 2 FkT L phase     10 log   Ps  INESC Jan 2013

2     1 / f 3   n 1      1     2 Q     

© G. Gielen, KU Leuven

     36

18

Nominal simulation

 AC simulation shows sudden Vout degradation (due to go degradation)  no frequency degradation  failure due to Hot Carrier damage INESC Jan 2013

© G. Gielen, KU Leuven

37

Variability awareness  process variability introduces

stress variability  transistor aging + process variability = yield(t)

[Maricau TCAD2010] INESC Jan 2013

© G. Gielen, KU Leuven

38

19

Variability-aware reliability simulation 

factor space exploration 



screening  linear model  detect interactions regression  interactions  weakly nonlinear effects



polynomial RSM



residual analysis 

error estimation

[Maricau TCAD 2010] INESC Jan 2013

© G. Gielen, KU Leuven

39

Example : VCO

[Maricau TCAD 2010] INESC Jan 2013

© G. Gielen, KU Leuven

40

20

Variability-aware reliability simulation

[Maricau TCAD 2010] INESC Jan 2013

© G. Gielen, KU Leuven

41

Example circuit : ADC

[Gielen DATE 2013] INESC Jan 2013

© G. Gielen, KU Leuven

42

21

Impact on analog circuits

INESC Jan 2013

© G. Gielen, KU Leuven

43

Aging-insensitive analog circuits • circuits that are immune to process variations » VTH VDD,nom) » e.g. phase noise of an LC-VCO □ asymmetrical y stress can result in time-dependent p mismatch » e.g. Voffset of a comparator □ time-dependent mismatch in matched transistors due to stochastic aging effects » e.g. MOS resistor in sub-45nm CMOS

INESC Jan 2013

© G. Gielen, KU Leuven

45

Contents

 Motivation  Aging modeling  Reliability simulation  Reliability-aware Reliability aware or resilient design  Conclusions INESC Jan 2013

© G. Gielen, KU Leuven

46

23

Design for failure resilience  intrinsically robust circuits

• worst-case overdesign to account for P/V/T corners plus overdesign p g to account for aging g g effects

• consumes extra power and area  self-healing circuits

• adapt circuits at run time to compensate for the degradation » reconfiguration or retuning of the circuit » digital g calibration • required performance is maintained, though degradation is present

 fully redundant circuits

INESC Jan 2013

© G. Gielen, KU Leuven

47

Self-healing (sense & react) circuits  run-time monitoring and run-time adaptability

• add monitors or “canary” circuits to watch the degradation of the circuit performance p • feed information to controller • real-time reconfigure circuit (e.g. extra components) or update circuit parameters (e.g. bias) to maintain the performance KNOBS & MONITORS for analog : this is compatible with evolution towards digitallyassisted analog INESC Jan 2013

© G. Gielen, KU Leuven

48

24

Example: high-voltage line driver  output driver overview:

 equivalent model:

 [Serneels ISSCC 2007]

Pload Rl  Pload  Ploss Rl  Ron

INESC Jan 2013

© G. Gielen, KU Leuven

49

Example: high-voltage line driver  guarantee minimum

power efficiency over lifetime  breakdown monitors  extra sub-transistors can be switched in

[De Wit DRVW 2008] INESC Jan 2013

© G. Gielen, KU Leuven

50

25

Self-healing test chip • on-chip power efficiency monitor □ measure output stage on-resistance (Ron=2.25Ω) □ compare p current Ron to reference resistor Rref • on-chip automatic controller • chip measurements 850um confirm real-time self-healing capabilities

1500um

[De Wit ESSCIRC 2011] INESC Jan 2013

© G. Gielen, KU Leuven

51

Failure-resilient implementation □ 90nm CMOS technology □ Pload = 10mW, 90% efficiency □ modifications for failure-resilient failure resilient operation : all included on chip !

INESC Jan 2013

© G. Gielen, KU Leuven

52

26

Measurement results

 initial performance (fresh circuit): η=82%

 no reconfiguration: ∆η = 5.5%

 with reconfiguration: ∆ηmax < 1 %

[De Wit JSSC 2012] © G. Gielen, KU Leuven

INESC Jan 2013

53

Conclusions  handling uncertainty, spatial and temporal reliability

are a big issue in nanometer CMOS design



more degradation effects and becoming stochastic

 accurate modeling and efficient CAD tools are needed to

assist the designer

• support design for reliability • less need for guardbanding – lower design margins  results have been proposed in this presentation • accurate transistor aging models for BTI, HCI and TDDB effects • efficient circuit reliability simulator methods » both nominal and stochastic effects • resilient design solutions with limited overhead » self-healing circuits through run-time adaptive sense&react principle INESC Jan 2013

© G. Gielen, KU Leuven

54

27

On-going PhD projects  CAD : • reliability modeling and simulation • high-frequency high frequency circuit synthesis • automated analog behavioral modeling  design :

• • • • • •

ultra-low-power wireless sensor networks autonomous sensor interfaces i imager readout d t circuits i it biomedical interface circuits digitally assisted analog resilient self-healing analog circuits

INESC Jan 2013

© G. Gielen, KU Leuven

55

28