L - Department of Statistics - University of Washington

Report 2 Downloads 111 Views
LIMIT THEOREMS AND INEQUALITIES FOR THE UNIFORM EMPIRICAL PROCESS INDEXED BY INTERVALS

BY

JON A, y/ELLNER GALEN R. SHORACK

TECHNICAL REPORT NO. 2 JUNEJ 1980

RESEARCH SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER

GRANT MCS 77-02255 AND GRANT MCS 78-09858

DEPARTMENT OF STATISTICS UNIVERSITY OF WASHINGTON SEATTLE} WASHINGTON

i

l"u\J\!l\L

I

VI t

of

1 ner

l'UJUALU

en

and

he ter anJ

Shorac

ers it

-

of has

60ros,

1,

t

ec

l

i 1

rl t

t

+

t

l

s

1

; !

,

L f'.1

l\e

rie r

9

June

1

neh expon roc

are est

tl

ts " an

5

C

i nt c r,

i J 1\' r

s.

l

r t

s t r i ra

Thes

concern:

t

e conve r t

+

the

A stron

15

for

rem re ated to t}lC well-known

t

Bro~nian

rid

~

1

also

Conn

Kie er and Stute are mentioned.

As an

stat

~h

f t

t c fOT testin

~ork

relat

ti

uniforffiit)" T

S +'-

r , E ck r , of LsaK

ication we introduce

en is the natural +

c

1

+

L

t

new

r va l ana I

U

(1. 1

denote

t

proce

t

for

t)-tJ

is

t

~ell-kno~n t

a

n

t

t

d + L




T

functional

that is

useful functi

ful,

ar ~e

.,

[

.5

conti

s

metr

result

j

8..

not d fi tr

1

I

t

distanc

bet~een

ions

f

.,

, c

,I,

1e t

sup

- sup

h

tive and negat

the

t

t

Let h+ and




b

1.3

>




.37

follows

Now

.19

is suf

prove

-

(1-0) M (log n)

is now

a

=

n

-1

By

, it suf f Lce s

23

s Clsb

(I

lJ!

IIII

31,. n

JJ

[0 (log n) a/2

40n 3

(log n )

a

exp

-(I-D)

by (1.19)

s

for

constant· n

M sufficiently large.

t

>

0

1

4

2 M

---2

(log

n)

(log log

2-a n)

2

II

20(1-a) (log log n) M3 (log n)

l-ex

/

(log log

n)

J

24

REFERENCES Bennett, G. (1962).

Probability inequalities for the sum of independent

random variables.

J. Amer. Statist. Assoc. 57 33-45.

Bolthausen, Erwin (1977).

A non-uniform Glivenko-Cantelli theorem.

Preprint.

Cassels, J. W. S. (1951 .

An extension of the law of the iterated logarithm.

Proc. Camb. Phil. Soc. 47 55-64. Chibisov, D. M. (1964).

Some theorems on the limiting behavior of empirical

distribution functions. Probabili

Selected Transl. in Math. Statist. and

6 147 -1 S6 .

An est

concern

the Kolmogorov limit distribut

Trans. Amer. Math. Soc. 67 3b-50. Chung, K. L., Erd~s, P., and Sirao, T. (1959).

On the Lipschitz condition

.

for Brownian motion. J. Math. Soc. Janan 11 263-274 . (saki, E. (197

The law of the iterated logarithm for normalized empirica

distribution function.

Wahrscheinlichkeitstheorie verw. Gebiete 3

147-167. Csorgo, ~l. and Reve s z , P. (1979). process?

Ann. Probabili

Durbin, J. (1973). Soc. Ind.

Regional Conference Series in Applied

~lat

ema t

Math. 9 1-64.

Eicker, F. (1979).

The asymptotic distribution of the suprema of t

standardized

ical processes.

w.

Ann. Statist. 7 116-138.

Probability

vari

ities for sums of

Amer. Statist. Assoc. 5

Ito, K. and McKean, H. Pa

st ----

7 731-737.

Distribution Theory for Tests Based on the Sample

Distribution Function.

Jaeschke,

How big are the increments of a Wiener

13-30.

Diffusion Processes and Their

---