l =i.*r=, r = 0

Report 5 Downloads 348 Views
\o

Calculators

SOLUTIONS-Exaw

Vl Section I

Part A

81

Exam VI Section I

PartA-NoCalculators 1.

A

p.121.

Using the product rule we obtain the first and second derivatives of y

\ ,xr --e

:

xsx

+):e

.t.rx | :e +e

+xe

Thus y"changes signat

= Zex + 2ex

x:

-2.

=ex(2+x)

C

p.727 4

Since H(4) = ! f (t)

dt, then

B

I

- area triangle DEF 11 = - (2)(1 + 2) - -(3)(2) : 3 - 3 22 :0

H(1) =

B

area trapezoid ABCD

A

ill tll -!--!--L--t--

rn

p.722 Solution I. 2

/1, - tl dx

:

areaof 2 equal triangles

0

='(1) (t)(1): \2/

t'

Solution II.

.rlr-rl dx-- I-x+tdx+lx-tdx= 00t20_[

E

;*rl^ *;--l =i.*r=,

p.722

(A), (B), and (D) are part of the definition of continuity and hence true. (C) is a statement equivalent to (A). (E) is the only one that could be false, for example, consider y = lxl at = 0.

r

F

2 t) SOLUTIONS-Exaw

82

5. C

Part

A

Multiple-Choice

t) " = tu,(zt. ?)|o = on(r* . t) - o,t = .*(r* . 1) -,

p.123 Using implicit differentiation on ry + x2 = 6 we obtain

) ) ) ) ,)

Atx=l

y+xy'+2x=0 xy':-2x-y -2x-t y' =------:x-l

-y+1=6 andy=-5 Thus

-) ) ,) ,) ,) ,) ,) ,) ,) ,)

p.122

'gz*"2(r, .

6. A

Vl Section I

2+5 y'=-=-7

')

7. C

p.123

) ) -) *)

Solution I.

ii;

*:

ii*

ex

dx) =

f,,nr*'.,l[ = }[*'o -

tns]=

)nz

) ),)

Solution II.

Let u = x2 + l, ttten du = 2xdx. Then

,) ')

310

t?;* [: =

8. E

Lr'u =

=

]r'n'o -

tnst =

)tnz'

p.r23

f'(x) = e"in* I. f"(x) = e'i"

II. III.

9. D

)^'l'!

cos

x

f"(0) = 1'1 = 1

Slope of A = x + 1 is 1, and the line goes through (Q

1)

t)

h'(x) = f'(*3 - t).(gxz) = g*2rsin(x3 -11 Since h'(x) > 0 for all r, then the graph of h(x) is increasing.

f(*s -

h(x) =

TRUE TRUE

TRUE

p.124 6

The total flow is

wlichis I Xrl dt

equal to the area under the curve. Each square under the

0

curve represents 10 gallons. There are 11 full squares and 2.5 part squares. Hence, the

approximate area

is

13.5 x 10 = 135 gallons.

) ) ) ) ) ) ) ) ) ') ') .) ') ) ) ) ) ) )

-t

\o

Calculqtors

10. B

SOLUTIONS

-Exam

VI

Section

I

part A

p.724 The instantaneous rate of change

f'\xl:2r2*

= e2x -3sinr is

-3rorr.

Thus, /'(0) =2eo -3cos0 =

11. E

of f ( x)

2-3=

-1.

p.724

/'

is negativ e on (a,

b) so f is decreasing there and (A) is false. ,[' increases on (a, c), hence, /,, is positive and the graph of/is concave up. As a result, (B), (C), and (D) are also false. (E) is true because/ is an antiderivative of

r:. E

/,.

p.125 Using the Fundamental Theorem and the Chain Rule on

Fr.r)=

';1 I ^.,

J

Then,

i,r D

dr,weobtain F'tx1=

) LI

1 _.)f

2+qx2s3

F'r-1,=#.e2)=-1

p.725

f /

is not differentiabre at x = 0 because

,r',\_

f

't* t -

*1T*

/,,r,.

is not differentiable at .r = 3 because/ is not continuous there.

Hence the answer is (D).

11. D

p.725 The velocity v(t) = y'11;

-

(t2

For / > 0, v(t) = 0 when / = 2.

++)(t)-t(2t)

(r'*+)'

=

4-tz

(z+t)(z-t)

V;ry=

UiT

83

84

SOLUTIONS-Exaw

Vl

Section

I

t-.4 r-J Part A

Multiple-Choice

-1

aJ -J t-'

15. D

p.L26

rt__

To find themaximumvalue of f(x) = 2x3 + 3xz -Izx+ 4 on the closed interval [O2], we evaluate the function/at the critical numbers and endpoints and take the largest resulting value.

,J

.

L

Thus in the closed interval [O2], the only critical number the one critical number and at the endpoints are

is x = 1. The values of the function at

From this list we see that the maximum value is

--J !

-J a z 1 -J 1 1

critical value: f(l): -3 endpoints: /(0)= 4 andf(2):8 8.

-J

p.126

..J

Using the Chain Rule twice on /(x) = ln(cos2x), we obtain

f '(x)

:-f

.

..J

(-sin2x) . (2).

-J a

cos2x

--J a

: _) _sin2;r : _f tan2.r

--1 1 --4 t_

.

cos2x

---1

1,7. A p.126 The slopes of the segments in the slope field vary

form

equation is not of the

ff

=

S(il.

as

*

changes. Thus the differential

That eliminates B, C and E of the five choices.

If the differential equation were # = *' + y2, then slopes would always be at least They aren't in Quadrant III. That eliminates choice (D).

18. E

I

t_ L

f' (*) = 6x2 + 6x -12 = 6(x + 2)(x -l)

16. A

-a

rt-

p.127

-1

0.

b A 3 .Z 3 --1 !a a -1

I

--'1

y=4;+3=1x+3)'

3

-J

1

-

n'=!(*+!i '2'

,aa --a

At ('J.,2), r'

=

:#=

When x = 0, then

y

i

*O

-2:i,,

-

the equation of the line is y

1) and

y

=i

-2 = ir- -U.

.J -a ,-J Z

-a

= :

t

h l-

s ; ): ):

l;

No

SOLUTIONS-Exam

Calculators

19. B

Solution I. Using the Product Rule twice on f (x) = (.r - 1)(x + 2)z gives

t;

; ; ; ; ;

1 L-

Pqrt A

p.127

);

; ; ; ;. ; ;. ; ;. ;, ;. ;. ;. ;. ;. ;;;" ;. ;. ;. ;. ;. ;. ;. ;. ; ; ;

Vl Section I

f ' (x)

= (x + 2)z + (x

l"@)

= 2(x + 2)

*

- l)'

2(x + 2)

2(x + 2) + 2(x

-l)

=6x+6 Thus,

/"(x)

= 0 when x

= -1.

Solution II.

:

Multiplying out 7(x)

(x _ 1Xx +

f(x) = (x -l)(x

2)2

gSves

+2)2

: (x -l)(x2 + 4x + 4) = *' +3x2 - 4 f'(x)=3x2 +6x

f"(*)

20. C

6,

thus

/"(x)

=

o

when x = -1.

p.127 b

in*

- *') dx =

0

ry +1,'.=

rn , $ =:o =+ 21.. C

= 6x +

b3

=27

zb3

a,,d b

-+

=

+

=3.

p.128 Separating variables

n ff

=

Integratinggives y3 = x + C

Thus,

!3=x +

gives:

3y2dy =

contains (-1,-1)

!=xtt3 x < 0..

tdx.

At(-1,-1), -1=-1+C +

!=x113

The largest domain that

Thus,

irt,

is

x < 0.

C=0.

85

SOLUTIONS-Exaw

86

22. C

Vl Section I

Part A

p.728

f\xt=rt-5*'*3* f'(x) =3xz -l}x*3 = (3-r - lXx - 3) and f'(x)