Labelling Image Regions Using Wavelet Features and Spatial ...

Information Systems & Semantic Web University of Koblenz ▪ Landau, Germany

Labelling Image Regions Using Wavelet Features and Spatial Prototypes Carsten Saathoff, Marcin Grzegorzek and Steffen Staab SAMT 2008, Koblenz, Germany

Motivation Sea Sky



Sky Sea

Sand

 Local features often not sufficient for classification  Exploit explicitly defined spatial knowledge to improve labelling  e.g. Sky not allowed left or right of Sea  Allow for efficient training of classifiers and spatial knowledge  Good labelling performance with few training examples

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 2 of 26

Agenda

 Analysis Framework  Exploiting Spatial Context, 1st try  Fuzzy Constraint Satisfaction (WIAMIS08)  Contribution  Low-Level Region Classification  Training of statistical models  Classification  Exploiting Spatial Context, revisited  Binary Integer Programming  Evaluation  Conclusions

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 3 of 26

Analysis Framework Training Training Examples

Sky Sea

above

Trained Spatial Background Knowledge Low Level Classifiers

(x,x,x,x) (x,x,x,x) (x,x,x,x) (x,x,x,x)

Hypotheses Generation

Spatial Relations Extraction

Analysis

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 4 of 26

Spatial Reasoning

Sky Sea

Sea Sand

Exploiting Spatial Context  Create appropriate optimization problem from  Regions  Spatial Relations  Hypotheses sets  Spatial background knowledge  Approaches  Fuzzy Constraint Satisfaction • WIAMIS08  Binary Integer Programming • later...

left-of

above

Carsten Saathoff [email protected]

above

Hypotheses Sand, 0.8 Sea, 0.7 Person,0.5 …

Background Knowledge above-of

ISWeb - Information Systems & Semantic Web

above

above

SAMT 2008 5 of 26

(Sky, Sea) -> 1.0 (Sea, Sand) -> 1.0 (Sea, Sky) -> 0.0 …

Region Labelling as a FCSP above-of

above-of above

above left-of

left-of above

above

above-of

above-of

Domain

Hypotheses

Sand, 0.8 Sea, 0.7 Person,0.5 …

Sand, 0.8 Sea, 0.7 Person,0.5 …

Background Knowledge above-of

(Sky, Sea) -> 1.0 (Sea, Sand) -> 1.0 (Sea, Sky) -> 0.0 …

(Sky, Sea) -> 1.0 (Sea, Sand) -> 1.0 (Sea, Sky) -> 0.0 …

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 6 of 26

F-Measure (WIAMIS08) F-Measure for all concepts average F-Measure. 80

SVM FCSP

7% average gain

70

60

50

40

30

20

10

0 person

boat

ISWeb - Information Systems & Semantic Web

sand

building

road

mountain

Carsten Saathoff [email protected]

water

sky

SAMT 2008 7 of 26

plant

snow

macro avg

Contribution  Region-Level classification based on  Wavelet Features  Statistical Classification  Spatial Reasoning  Training of Spatial Knowledge  Formalization as Binary Integer Programming  Comparison with alternative approach over different training set sizes

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 8 of 26

Analysis Framework Training Training Examples

Sky Sea

above

Trained Spatial Background Knowledge Low Level Classifiers

(x,x,x,x) (x,x,x,x) (x,x,x,x) (x,x,x,x)

Hypotheses Generation

Spatial Relations Extraction

Analysis

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 9 of 26

Spatial Reasoning

Sky Sea

Sea Sand

Wavelet Features and Statistical Training

Mean value over wavelet coefficients of all neighborhoods

Mean pixel value Feature Vector:

 m , b R , bG ,b B  Compute mean and standard deviation

Statistical model for concept K

ISWeb - Information Systems & Semantic Web

 K =  m ,  R , G , B   K =  m , R , G ,  B 

Carsten Saathoff [email protected]

SAMT 2008 10 of 26

Analysis Framework Training Training Examples

Sky Sea

above

Trained Spatial Background Knowledge Low Level Classifiers

(x,x,x,x) (x,x,x,x) (x,x,x,x) (x,x,x,x)

Hypotheses Generation

Spatial Relations Extraction

Analysis

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 11 of 26

Spatial Reasoning

Sky Sea

Sea Sand

Statistical Classification Feature extraction:

c r = m , b R , bG , b B 

Training Set Sky Sea

above

Input for spatial reasoning ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 12 of 26

Sky, 0.8 Sea,0.76 Sand, 0.68 Person, 0.67 Building, 0.54 …

Analysis Framework Training Training Examples

Sky Sea

above

Trained Spatial Background Knowledge Low Level Classifiers

(x,x,x,x) (x,x,x,x) (x,x,x,x) (x,x,x,x)

Hypotheses Generation

Spatial Relations Extraction

Analysis

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 13 of 26

Spatial Reasoning

Sky Sea

Sea Sand

Analysis Framework Training Training Examples

Sky Sea

above

Trained Spatial Background Knowledge Low Level Classifiers

(x,x,x,x) (x,x,x,x) (x,x,x,x) (x,x,x,x)

Hypotheses Generation

Spatial Relations Extraction

Analysis

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 14 of 26

Spatial Reasoning

Sky Sea

Sea Sand

Constraint Acquisition  Background Knowledge consists of Spatial Constraint Templates  degree of satisfaction for spatial arrangements of concepts  Simplest version: crisp degrees • e.g. above = (Sky, Sea):1.0, (Sea, Sky):0.0

 Acquired by mining from a set of labelled examples (spatial prototypes)  mining based on confidence (and support) Background Knowledge

ISWeb - Information Systems & Semantic Web

above-of

(Sky, Sea) -> 1.0 (Sea, Sand) -> 1.0 (Sea, Sky) -> 0.0 …

left-of

(Sky, Sea) -> 0.0 (Sea, Sand) -> 1.0 (Sea, Sea) -> 1.0 …

Carsten Saathoff [email protected]

SAMT 2008 15 of 26

Analysis Framework Training Training Examples

Sky Sea

above

Trained Spatial Background Knowledge Low Level Classifiers

(x,x,x,x) (x,x,x,x) (x,x,x,x) (x,x,x,x)

Hypotheses Generation

Spatial Relations Extraction

Analysis

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 16 of 26

Spatial Reasoning

Sky Sea

Sea Sand

Exploiting Spatial Context  Create appropriate optimization problem from  Regions  Spatial Relations  Hypotheses sets  Spatial background knowledge  Approaches  Fuzzy Constraint Satisfaction • WIAMIS08  Binary Integer Programming

above

above left-of

above

above

Hypotheses Sand, 0.8 Sea, 0.7 Person,0.5 …

Background Knowledge above-of

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 17 of 26

(Sky, Sea) -> 1.0 (Sea, Sand) -> 1.0 (Sea, Sky) -> 0.0 …

Binary Integer Programming Problem of the form:

minimise Z =c T x st. A x=b x ∈{ 0,1}

Example: Assignment Problem • i=1...n workers • j=1..n machines • cij cost of assigning worker i to machine j • xij=1 assigns worker i to machine j

minimise n

n

∑ j =1 ∑i=1 c ij xij st. n

∑ j =1 x ij=1 for i =1,. .. , n n ∑i=1 xij =1 for j=1,. .. , n x ij ∈{0,1 }

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 18 of 26

Spatial Reasoning as a BIP

above

above left-of

Set of variables: ko

c itj =1

above

ko

c itj

si =l k , s j =l o

above

Only one assignment per relation Hypotheses Sand, 0.8 Sea, 0.7 Person,0.5 …

∀ r t = si , s j : ∑l

Background Knowledge above-of

(Sky, Sea) -> 1.0 (Sea, Sand) -> 1.0 (Sea, Sky) -> 0.0 …

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 19 of 26

k

∑ l c koitj =1 o

Spatial Reasoning as a BIP (2)

above

above left-of

above

Link outgoing relations: Base relation:

above

rt

O

Link remaining outgoing relations to base relation:

∀ l k : ∑l c i t j −∑ l c it j ' =0 ko

o

k o'

O

o'

Hypotheses

Accordingly for incoming relations:

Sand, 0.8 Sea, 0.7 Person,0.5 …

∀ l k : ∑l c okj t i − ∑l c oj '' kti =0 o

E

o'

Background Knowledge above-of

(Sky, Sea) -> 1.0 (Sea, Sand) -> 1.0 (Sea, Sky) -> 0.0 …

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

Link outgoing and incoming relations o' k ∀ l k : ∑l c ko i t j −∑ l c j ' t i =0 o

SAMT 2008 20 of 26

O

o'

E

Objective Function Set of variables:

above

above left-of

ko

c itj

Linking constraints Hypotheses i l k 

above

above

Templates

T t l k , l o 

Hypotheses Sand, 0.8 Sea, 0.7 Person,0.5 …

Objective Function:

Background Knowledge above-of

(Sky, Sea) -> 1.0 (Sea, Sand) -> 1.0 (Sea, Sky) -> 0.0 …

ISWeb - Information Systems & Semantic Web

∑r ∑l ∑l min i l k  , j l o∗T t l k ,l o ∗c t

Carsten Saathoff [email protected]

k

o

SAMT 2008 21 of 26

ko itj

Experimental Setup

 Measure improvement achieved with  FCSP  Linear Programming  over low-level classification with different training set sizes  Data set with 923 natural and urban images  Set of 10 concepts  building,foliage,mountain,person,road,sailingboat,sand,sea,sky,snow  5690 labelled regions  568 labelled „unknown“ -> ignored  Ground truth defined on automatic segmentation  Regions labelled with dominant concept  Ground truth created for this work ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 22 of 26

Overview of dataset

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 23 of 26

Classification Rate over Training Set Size

0.85 0.80 0.75

Low-level classification FCSP BIP

0.70 0.65 0.60 0.55 0.50 50

100

ISWeb - Information Systems & Semantic Web

150

200

250

Carsten Saathoff [email protected]

300

350

SAMT 2008 24 of 26

400

F-Measure per Concept Training Set with 300 images (best performing one for BIP) 1 0.9 0.8 0.7 0.6 Low-level FCSP BIP

0.5 0.4 0.3 0.2 0.1 0 snow

road

mountain foliage

ISWeb - Information Systems & Semantic Web

person

sand

Carsten Saathoff [email protected]

sky sailing-boat sea

SAMT 2008 25 of 26

building average

Conclusions

 Combination of  Wavelets based region classification  Spatial context with explicit knowledge  BIP outperforms FCSP  Classification rate  Efficiency (BIP avg ~1 sec, FCSP ~40secs)  Validation of earlier observation  Explicit knowledge provides good model for spatial context exploitation  Low amount of training data required to acquire good performing models

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 26 of 26

Thanks!

ISWeb - Information Systems & Semantic Web

Carsten Saathoff [email protected]

SAMT 2008 27 of 26