marks group research style AWS

Report 0 Downloads 19 Views
MARKS GROUP RESEARCH STYLE

 Highly Interdisciplinary  Integrated Synthesis, Spectroscopy, Mechanism  Organometallics, Catalysis, New Reactions & Ligands  Hard and Soft Matter, Interfaces, Solar Energy, Molecular Electronics  Collaborations with Physicists, Engineers, Industrial & National Lab Scientists (Visits, Internships)  Spirit of Teamwork

MARKS GROUP RESEARCH PROGRAM [email protected] http://www.chem.northwestern.edu/~marks/index.html

Themes  Unconventional Electronics Building Blocks for Hybrid Inorganic/Organic Circuitry

Molecular and Polymer Photovoltaics Materials for Organic Photovoltaics and Displays

 Catalysis with Homogeneous and Surface Metal Electrophiles Catalytic Routes to New Materials

Organometallic Chemistry of f-Elements; Green Chemistry Thermochemical Strategies for New Catalytic Transformations

Pushing the Envelope

GOAL: FLEXIBLE ELECTRONIC CIRCUITRY RF ID tags, display backplanes, e-books, sensors, “smart” packaging, “smart” displays, photovoltaics, “internet of things”

Roll-to-roll mfg

Science Needed for: Versatile, Unconventional Materials n- and p-Type Semiconductors for CMOS Compatible High-k Gate Dielectrics Synergy of Soft Matter & Hard Matter Constituents NRC/National Academies, “The Flexible Electronics Opportunity” National Academies Press, 2014 MRS Bulletin, articles and references therein, February 2017, 42

Transistor Structure & Function VD VG

Output plot

semiconductor source charge carriers drain dielectric gate / substrate

OFF VG = 0

ON VG ≠ 0

NO CHARGE CARRIERS BETWEEN s AND d => ID = 0 CREATES CHARGE CHANNEL IN SEMICONDUCTOR LAYER => ID ≠ 0

Transfer plot

New Materials Must Optimize: Carrier mobility (µ) & Stability Current on/off ratio (Ion/Ioff) Threshold voltage (VT) LCD Display Backplanes use a-Si:H Subthreshold swing (SS) µ ~ 0.5 cm2/V∙s-1Ion/Ioff > 106 Dielectric capacitance (Ci) n-type only, poor current carrier

Lecture Outline 

I. Challenges, Opportunities



II. New Organic Semiconductors Properties Tuning, Devices



III. Nanoscopic Dielectrics Self-Assembled Nanodielectrics (SANDs). Designer Dielectrics



source

Semiconductor

Dielectric

Gate

IV. Amorphous Oxides Transistors, Hybrid Devices, Heterojunctions

V. Conclusions, Acknowledgments

drain

Materials Design for n-Type Semiconductors Enablers of Organic CMOS

p-Type = Radical cation (h+) conduction through highest occupied MOs (HOMOs) n-Type = Radical anion (e-) conduction through lowest unoccupied MOs (LUMOs)

R

R Substituents Enhance solubility

X

Molecule Substituents Lower HOMO, LUMO energies for electron transport, environmental stability

X Flat architecture π-π stacking Extended π system to minimize Marcus reorganization energy

High-yield coupling chemistry

R

Polymer

Linker

R X X

n

Reviews: MRS Bulletin, 2010, 35, 1018; Accts. Chem. Res. 2011, 44,501; Chem. Rev. 2014, 114, 8943.

p- and n-Type Copolymers & Devices Electron rich

O

C12H25

OC2H5

S

Br Br

OC2H5

C12H25

n

Me3Sn Pd(PPh3)2Cl2

PBDT-TVOE (p-type)

O

2OD N

Electron poor O

OC2H5

Br

S

S H 5C 2O

C12H25

C12H25 S

Br

S

S

2OD N O

O

S

S H 5C 2O

SnMe3 Pd(PPh3)2Cl2

S

S

N O 2OD

H 5C 2O O

N

n

O

2OD

PNDI-TVOE (n-type)

Complementary inverters: inkjet printed p- and n-type copolymers BGTC

Au

B.

Au

p+-Si

TGBC Au PMMA Semiconductor Au Au Passivation

ISD (A)

SiO2

10-6 10-7 10-8

0.2

10

10-10

1.5

0.0 0 306090 VSG (V)

D. -6 10

(ISD)1/2 (A)1/2 x10-2

C. 10

0.4

-9

Glass

-4

0.6

10-5

Semiconductor

ISD (A)

10-7 1.0

10-5 0.5

0.10

-8

10

0.05

10-9 10-10

10-6 0 30 60 90 VSG (V)

0.0

(ISD)1/2 (A)1/2 x10-2

A.

10-11

0

30 VSG (V)

0.00 60

Facchetti, Marks et al. J. Am. Chem. Soc. 2015, 137, 10966

Inkjet-Printed Bithiophene-Imide-Based AirStable Complementary Polymer Inverters Gain ~ 40 at VDD = - 100V R O

O

N

S

S

n

n-type

R O

O

N

R

R S

S

S

S

S

S

n

R

R

p-type

 Ceradrop X-Serie Materials printer Guo, Ortiz, Noh, Baeg, Facchetti, Marks, J. Am. Chem. Soc..2018, in press.

Remarkable n-Type Polymer Semiconductors Highly ordered microstructure → ultra-high electron mobility

X-ray diffraction shows very high crystallinity, close packing of the chains Very small bandgaps, absorption out to ~1000 nm Preliminary OPV efficiency = 4.1% ; photocurrent out to 1000 nm

Bronstein, Al-Hashimi, Marks, Chen, et al Chem. Mater., 2016, 28, 8366–8378

80% FF Moderate Bandgap D-A OPV Copolymers

Polymer

Mn (kDa) PDI

PTPD3T PBTI3T

40 31

2.5 2.9

λ max abs film λ onset abs E HOMO (nm) 582 628

film (nm) (eV) 681 -5.55 686 -5.58

E LUMO (eV) -3.73 -3.77

E gopt

(eV) 1.82 1.81

J-V

e-

EQE

Inverted Cell Structure

h+ µ h (SCLC)

Polymer

µ h (TFT) (cm2/Vs)

PTPD3T

5.87 × 10-2

1.2 × 10-3

0.786 (0.795)

PBTI3T

2.74 × 10-3

1.5 × 10-3

0.850 (0.859)

(cm2/Vs)

V oc (V)

J cs

FF (%)

PCE (%)

12.3 (12.5)

78.7 (79.6)

7.72 (7.95)

12.8 (12.9)

76.3 (77.8)

8.42 (8.76)

(mA/cm2)

Guo, Huang, Chang, Chen, Marks Nature Photonics, 2013; JACS, 2015 & 2017.

Lecture Outline 

I. Introduction, Challenges, Opportunities



II. New n-Type Organics Rylenedimides



III. Nanoscopic Dielectrics Self-Assembled Nanodielectrics (SAND)



IV. Amorphous Oxides Transistors

V. Conclusions, Acknowledgments

source

drain

Semiconductor

Dielectric

Gate

Need for Better Gate Dielectric: SANDs Enhance

Organic & Inorganic Transistor Mobility; Reduce Voltage & Hysteresis  n- and p-Type Organic Semiconductors  Carbon Nanotubes, Graphene  ZnO & In2O3 Nanowires  GaAs, 2D MoS2  Oxide Thin Films  Conventional & Nanomembrane Si Si Nanomembrane TFTs

ISD~ µVG Ci

H+ Radiation-Hard SAND TFTs

Active Matrix ZnO NW/SAND OLED Display

Materials module deployed on the International Space Station. Inset: SAND-based transistors fabricated by Northwestern scientists Chem. Rev., 2010; Accts. Chem. Res. 2014; ACS Appl. Mater. Interfaces, 2016; Accts. Chem. Res. 2016

Next-Generation SANDs Customized for Specific Function Type III SAND Non-Ambient Growth Hydrocarbon Solvents

V-SAND Zr-SAND & Hf-SAND VA-SAND Ambient Growth Vapor Growth Vapor Growth Alcohol Solvents Avoid Solvents Avoid Solvents Zr

Zr

Zr

O

O HO

ALD Al2O3

O

O

O

O

HO

N

N

N N

N N N+

N+

Br O

O P O O O

P

O

O

Zr

Zr

Zr

Zr

Br

O

O

ALD Al2O3 MRS Bulletin, 2010; J. Am. Chem. Soc., 2011; ACS Nano, 2012; Accts. Chem. Res. 2014; Chem. Mater., 2017

Zr, Hf-SAND Self-Assembled Nanodielectrics TEM Cross-section • Organic/inorganic hybrid multilayer • Solution processable under ambient • Controllable thickness, large-area uniformity, well-defined structure • High capacitance, superior insulating properties • 350° C thermal stability

Fabrication • Self-assemble phosphonic acid-based polarizable π-molecule • Spin coat ultra-thin ZrOx primer & interlayers

Capacitance characteristics

M-SAND-4 (4 layer) • Leakage: 10-7 A/cm2 @2 MV/cm • Ci: 465 nF/cm2 (Zr), 1 μF/cm2 (Hf) • k ≈ 11 (Zr), 20 (Hf) •Roughness(RMS): 12 at 4 molecules/nm2 coverage

Computed dielectric constant of saturated & polyacetylenes at varying coverages. ε > 7.0 (C > 3.0 μF/cm2) Heitzer, Marks, Ratner, ACS Nano 2014; JACS 2015; Accts. Chem. Res. 2016,

In press

Synergistic Effects with Tight Packing Dielectric constant increases with chain length

d = film thickness

Capacitance does not decline as 1/d for conjugated chains. Capacitance reaches higher values than a linear extrapolation (-------)

Chain Dielectric constant

66Å 2 per molecule 33Å 2 per molecule

18 16 14 12 10 8 6 4 2

16.5Å 2 per molecule

Film Thickness Increases

0

10

20

30

40

Length (Å) Van Dyck, Marks, Ratner, ACS Nano, 2017, in press

Design Challenge: High ε with Low Leakage In oxides, smaller band gap leads to higher ε, but also larger leakage current

κε εs=2.21

AC

Can dielectric constant be increased while leakage current is kept constant? Quantum Interference

εs=2.24

AQ

εs=4.52

DFT calculations of conductance

AQON

εs=4.72

AQOF

DFT calculations of conductance

Conductance in organic molecules reduced by orders of magnitude without compromising dielectric performance. Bergfield, J.P.; Heitzer, H.M.; Van Ratner, Dyck, C.; Marks, ACS Nano, 2015, 9, 6412–6418. Bergfield, Heitzer, Van Dyck, Marks, ACS Nano, T.J.; 2015,Ratner, in press.M.A.; DOI:10.1021/acsnano.5b02042. MRSEC

Lecture Outline 

I. Introduction, Challenges, Opportunities



II. New n- and p-Type Organics Rylenedimides



III. Nanoscopic Dielectrics Self-Assembled Nanodielectrics (SAND) Unconventional Semiconductors



IV. Amorphous Oxides Transistors, new tools, heterojunctions



V. Conclusions, Acknowledgments

source

drain

Semiconductor

Dielectric

Gate

Transparent Electronics Could Use Oxide TFTs + Organics Flexible Transparent Displays Transparent Displays

Heads-up Displays Artefactgroup.com

Technology Motivation

Samsung Transparent OLED TV

Xconomy.com Sharp IGZO Displays

Amorphous Oxide Driving Electronics: In-Ga-Zn-O? Can We Hybridize with Organic Materials?

TRANSPARENT CONDUCTING OXIDE (TCO) ELECTRONIC STRUCTURE MODEL J. Goodenough

Energy

CB

np

Metal Cation Conduction Band • Lies above top of O-2pπ VB by ΔEgap ≥ 3.1eV

ns

• Low enough in energy to accept electrons εF

ED

• Itinerant electrons cannot be excited into higher band by light absorption

Dope to make conductive (e.g., Sn in In2O3)

Cation Requirements Usually Met by O2-: 2p6

VB

N(ε) (DOS)

• 5s CB of Cd2+, In3+, Sn4+ • Burstein-Moss increase in ΔEgap with doping

What are the Limitations and Implications of this Picture? Can We Use These for TFTs? Freeman, Medvedeva Zunger

PNAS 2002, JACS 2007, MRS Bulletin 2010, Nature Mater 2016

Attractions of Amorphous Oxide Semiconductors (AOSs) for High-Performance TFTs Disordered Crystal Structures

 High Mobility, s-State Conduction Band  Low Deposition, Processing Temperatures  Very Smooth Surfaces, No Grain Boundaries  Mechanical Flexibility  Optical Transparency

Film XRD and Electron Diffraction

 Properties Tunable between Insulating, Semiconducting, Highly Conducting by Doping

Bellingham, Hosono, Mason, Wager Yu, X.; Marks, T.J.; Facchetti, A. Nature Materials, 2016, 15, 383- 396. DOI:10.1038/nmat4599.

Amorphous Semiconductor Electronic Structure Silicon 3p 3s

sp3

σ*

CBM

Si 1

Conduction Band

Conduction Band

Eg VBM

Transparent Oxide O 2p

Amorphous

Si 2

sp3 σ

O2-

Crystalline

CBM

M2+ M ns

Eg VBM

Attractions of a-Transparent Oxide Semiconductors: – – – –

Comparable carrier mobility Low processing temperature Uniformity, smoothness Mechanical flexibility

T. Kamiya; H. Hosono, Int. J. Appl. Ceram. Technol., 2005, 2, 285.

Art Freeman, Julia Medvedeva

Schematic Electronic Structure Around the IGZO Band Gap

T. Kamiya and H. Hosono. “Oxide TFTs” Handbook of Visual Display Technology, pp 729-749, Springer-Verlag, Heidelberg, 2015.

Transparent a-Zn-In-Sn-O TFTs Grown by Pulsed Laser Deposition

Protective Layer

Transmittance ~75% (glass ~90%) TFT Performance: μ ~160 cm2/V·s on SAND (μ ~20 on SiO2) VG & VDS ~1.0 V VT ~0.2 V Ion:Ioff ~105 This Isn’t Solution Processing! SS ~0.13 V/decade Chang, Facchetti, Marks Advan. Mater. 2010; J. Am. Chem. Soc. 2010; Nature Mater. 2016.

Low Temperature Combustion Synthesis of a -Oxide Films Solution Precursors Product

Combustion Condensed Oxide Lattice

Conventionalll

µ (cm2/Vs)

Reaction Coordinate

101

TFT Performance (Si/SiO2 Substrates) Conventional (Sol-Gel) Combustion 101 101 In2O3

-1

10-1

-3

10-3

10 10

-5

10

-7

10

Al2O3 dielectric

200 300 400 Temp (oC)

-7

10

Exo

20

20

0 100

0 100

In2O3

75

200 300o 400 Temp ( C)

-5

10

IZO

75

50

50

25

25 200 400 600 Temp (oC)

10-3 ZTO

40

10

10-1

-5

10

Reaction Characterization Conventional (Sol-Gel) Combustion 60 30

IZO 200 300 400 Temp (oC)

200 400 600 Temp (oC) TCO Conductivity

Conductivity (S/cm)

Ignition

Mass (%) DTA (µV/mg)

Energy

Oxidizer + Organic Fuel

103

101

-1

10

ITO

200 300 400 500 o Temp ( C)

Kim, Fachetti, Kanatzidis, Marks Nature Materials 2011, 2016; JACS 2017, in press.

Result: Inkjet Printed, Combustion-Processed Flexible Amorphous In2O3 Transistors on Plastic Transistor Characterization

Printed a-In2O3

3.0

1E-5

1E-7 1E-8

VG =1.00V

2.0 IDS IG

IDS (µA)

500 µm

IDS & IG (A)

1E-6 VDS = 1V

1.0 0.80V

1E-9

Research Agenda • Materials Scope • Microstructure Evolution • Performance Limits, SAND

1E-10 -0.5 0.0 0.5 1.0 VG (V)

0.0

0.60V

0.0

0.5 1.0 VDS (V)

Plastic: μ = 8 cm2/V·s Ion:Ioff ~ 104 Glass: μ = 40 cm2/V·s Ion:Ioff ~105 a-Al2O3 Gate Dielectric SAND Also Works

Kim, Fachetti, Kanatzidis, Marks Nature Materials 2011,10, 382; JACS 2017, in press.

Inkjet-Printed Combustion a-IGZO on Hf-SAND Dramatic operating voltage reduction

SiO2 Dielectric μ ≈ 5 cm2/Vs High operating voltage

Hf-SAND Dielectric μMAX > 40 cm2/Vs All-solution processed 2× mobility vs. spin-coated combustion >> sol-gel. IGZO TFT performance approaches sputtered ones. IGZO/ZrOx dielectric Mobility >20 cm2/Vs at 2V operation

Mobility (cm2Vs-1)

IGZO/SiOx dielectric

Sol-gel Combustion-spin Sputter SCS

103 101 10-1

IGZO

10-3 10-5

NA NA 225 250 275 300 Temperature (oC)

IGZO Density by Positron Annihilation Spectroscopy & X-ray Reflectivity: 10-3

IGZO Defect Density by C-V;

Sputtered ≈ SCS >> Sol-gel Microsoft Surface 4 has sputtered IGZO TFTs driving display

IDS (A)

Sputtered ≈ SCS >> Sol-gel

SCS IGZO on ZrOx

10-5 10-7 VDS= 2 V

-9

10

-1

0 1 VGS (V)

2

Top Gated SAND/Oxide Transistors Combine SAND Dielectric + Combustion Processed IGZO Au

SAND

Fundamental Questions: • • •

Future:

IGZO

• ITO

ITO

Al

Is SAND adaptable to top gate TFTs? Can SAND be grown on combustion processed oxide? What are characteristics of this novel interface?

Al



Characterize microstructure, interfacial defect densities as a function of oxide and oxide surface preparation Computation of interface characteristics

SiO2

Initial results are: – µsat ~ 20 cm2V-1s-1 – Vth = 0.79 V – Log (On/Off) = 7.16

Current (A)

1E-6 1E-8 1E-10 1E-12 -1 Chang, Bedzyk, Dravid, Hersam, Marks

Drain Current Gate Current

0

1

2

Gate Voltage (V)

3 32

MRSEC

‘Invisible’ Flexible TFTs Enabled by Amorphous Metal Oxide/Polymer Channel Layer Blends PVP concentration 0 - 20 wt%

In2O3 + PVP

XRD

• • •

Optical transparency

Bending test for flexible TFTs

Polymer blend + metal oxide: new route to amorphous oxide thin films MO:polymer blend films realize ultra-flexible electronic devices High performance flexible transparent transistors in solution process Chang, Bedzyk, Dravid, Marks, Advan. Mater., 2015.

What About an Electron-Rich Polymer? H

n

PVA

PEI N

N

OH

NH2

N

N

H

n

e

e e

Huang, W.; Zeng, L.; Yu, X.; Guo, P.; Wang, B.; Ma, Q.; Chang, R.P.H.; Yu, J.; Bedzyk, M.; Marks, T.J.; Facchetti, A.; Advan. Funct. Mater. 2016, 26, 6179-6187. DOI: 10.1002/adfm.201602069

Doped Hybrid Combustion Materials. Electron-Rich PEI As Organic Oxide Dopant PEI Mobilities on Si/SiO2 Dielectric

Higher Mobilities, Lower Ion/Ioff Microstructure-Electronic Properties Relationships No PEI

Film characterized by XRD, DSC, TGA, FT-IR, TGA, FET, AFM, XPS, XAS, PDF

< 1%

• Good crystallinity ~70% • Extensive Oxygen vacancies

• Deceased crystallinity • PEI electrons fill raps

• High Ioff • Negative VT

• Reduced Ioff • Positively shifted VT • Minor increased mobility

crystalline In2O3

1% - 1.5%

> 1.5%

• Mostly amorphous • Deep traps filled • Some shallow traps filled

• Mainly amorphous • Deep traps cannot be filled

• Low Ioff • Optimal VT ~ 0 V • Enhanced mobility

• Low Ioff • Positive VT • Decreased mobility

amorphous In2O3

PEI

Huang, W.; Zeng, L.; Yu, X.; Guo, P.; Wang, B.; Ma, Q.; Chang, R.P.H.; Yu, J.; Bedzyk, M.; Marks, T.J.; Facchetti, A.; Advan. Funct. Mater. 2016, 26, 6179-6187. DOI: 10.1002/adfm.201602069

Combustion Synthesis of All-Oxide IGZO Transistors Conformal Coating IGZO VDS=3 V

TFT functional layers SCS growth using shadow masks -2 -1 0

1

VGS (V)

2

3

Wang, B.; Yu, X.; Guo, P.; Huang, W.; Zeng, L.; Zhou, N.; Chi, L.; Bedzyk, M.J.; Chang, R.P.H.; Marks, T.J.; Facchetti, A.; Advan. Electron. Mater. 2016, 2, 1500427. DOI: 10.1002/aelm.201500427.

All SCS TFTs

TEM/EDX

Transparency

W/L=1000/150 μm

Wang, B.; Yu, X.; Guo, P.; Huang, W.; Zeng, L.; Zhou, N.; Chi, L.; Bedzyk, M.J.; Chang, R.P.H.; Marks, T.J.; Facchetti, A.; Advan. Electron. Mater. 2016, 2, 1500427. DOI: 10.1002/aelm.201500427.

PEI-In2O3 Hybrid Films

Sustainable “Sweet” Combustion Synthesis of IGZO

Mobilities with Si/SiO2 Dielectric Much Higher than with AcAcH! HO

H HO

Combustion Synthesis Film characterized by XRD, DSC, TGA, FT-IR, TGA, FET, AFM, XPS, XAS, PDF

HO

O OH

HO O OH

OH

HO O OH

O

HO

OH HO OH

O OH

OH OH

OH

Sugar

IGZO precursors

Wang, B.; Zeng, L.; Huang, W.; Melkonyan, F.; Sheets, W.C.; Chi, L.; Bedzyk, M.J.; Marks, T.J.; Facchetti, A.; J. Amer. Chem. Soc., 2016, 138, 7067–7074. DOI: 10.1021/jacs.6b02309.

a-IGZO/p-SWCNT Heterojunctions Goal Fabricate heterojunctions from solution processed p- (SWCNTs) and n- (a-IGZO) type semiconductors over large areas

HfO2 or Hf-SAND

 Standard photolith & etching fabricate p-SWCNT/a-IGZO p-n heterojunctions over large areas  Geometry allows fabrication of adjacent (control) p- and n- type MOSFETs next to heterojunction Hersam, Lauhon, Marks, PNAS 2013, 110, 18080 ; NanoLett. 2015, 15, 416; Nature Materials, 2017, 16, 170.

a-IGZO/p-SWCNT Heterojunction Electrical Properties

Anti-Ambipolar !

 Rectifying diode-like output tunable with gate voltage  Anti-ambipolar transfer with two off-states and one on-state  Implications for communications keying circuitry Hersam, Lauhon, Marks, PNAS 2013, 110, 18080; NanoLett. 2015, 15, 416; Nature Materials, 2017, 16, 170.

Truly Flexible, Manufacturable Printed Displays Prototype: Polyera/Flexterra “Wove” Electrophoretic Display(EPD) + Organic Transistors

CONCLUSIONS Goal: Low Temperature Fabrication of Printed, Flexible, Transparent, Unconventional Electronic Circuitry

Printable Materials for Air-Stable Organic CMOS Design Rules for Stable n-Type Molecules, Polymers

High Performance Gate Dielectrics Molecularly Engineered High-k SANDs for OFETs, IFETs Low Voltage, Low Hysteresis

Hybrid Organic-Inorganic Circuitry Organics + Inorganics: The Winner?

*Theory & Modeling Essential to Materials Design* Understand known materials, design new ones

Applicable to Soft Matter Photovoltaics

Acknowledgments Northwestern University Antonio Facchetti Mark Ratner Michael Wasielewski Mercouri Kanatzidis Mark Hersam Vinayak Dravid Mike Bedzyk Lincoln Lauhon Bob Chang Sara Dibenedetto Zhiming Wang Hakan Usta Deep Jariwala Choongik Kim Xinge Yu Jeremy Smith Rocio Ortiz Young-Guen Ha Lian Wang Jun Liu Myung-Han Yoon Brooks Jones Henry Heitzer Myung-Gil Kim Vinod Sangwan Li Zeng

Johns Hopkins U. Howard Katz U. Texas Austin Ananth Dodabalapur Northwestern U. John Rogers U. Missouri. Julia Medvedeva TAMU-Q Mo Al-Hashimi Cambridge University Hugo Bronstein AFRL Mike Durstock, Ben Leever U. Malago Rocio Ortiz Purdue U. David Janes, Peter Ye

Numerous Colleagues in Europe and Asia!

$ AFOSR, ONR, NSF-MRSEC, NASA, DARPA,

Many Thanks!

a- ZITO/Arylite Anode OPV Bending Tests Sheet Resistance

OPV PCE

OPVs

OPV J-V

Chang, Marks, Advan. Mater. 2014

ITO Replacement: Flexible Amorphous-ZITO Electrodes on AryLite Polyester (> Zr-SAND? X-ray reflectivity reveals well-ordered nanostructures e-density

• X-ray fluorescence assay of Hf-SAND composition & coverage. • Denser PAE surface coverage on HfO2 enhances capacitance (1.1 μF/cm2) PAE Bedzyk, Hersam, Marks JACS 2013

Consequences of 1T→ 4T Catenation in TPD and BTI Photovoltaic Copolymers C12H25 S

n

S O

S S

O

O

N

N

S O

N

S

S S

O

C12H25

C12H25 S

S

n

O C8H17

S

S

S

S

n

S

S

n

C8H17

PTPD3T

C12H25 S

S O

O

N

C8H17

N

O

O

N

C8H17

PBTI1T

O C 2H 5 C 4H 9

S

S

C12H25

O

N

C6H13 C8H17

PTPD3T''

PTPD4T

S

n

S

S

S

S

S

n

S

S

S

S S

N

O C6H13 C8H17

O

PBTI3T

N

O C6H13 C8H17

O

PBTI3T'

N

O

O C6H13 C8H17

PBTI3T''

n C12H25

C12H25 C12H25 O

PBTI2T

O

n

S

C12H25

C12H25 O

C12H25 C12H25

C8H17

PTPD3T'

S

S

C6H13

S

S

S

n

S

C12H25 C12H25 S

n

S

S

C6H13

S

S

S

C12H25

O

N

C6H13

PTPD2T

n

C12H25 C12H25

C12H25 S

C8H17

C8H17

S

n C12H25

O

PTPD1T

S

S

C6H13

C6H13

S

C12H25

S

N

O C6H13 C8H17

PBTI4T

1T→ 4T OPV Trends for TPD & BTI Series • • • •

Conjugation length saturates at ~ 3T; HOMOs continue to rise TPDs: computed most planar; XRD/TEM: more crystalline, domain-pure PC71BM blends TPDs: higher mobilities & Jsc; FF, Jsc, PCE maximize at 3T PCE sensitive to alkyl substituent positioning. PTPD3T’, PTPD3T’’, PBTI3T’ & PBTI3T’’ have lower PCEs than PTPD3T & PBTI3T

Higher OPV Performance

Zhou, N.; Guo, X.; Ortiz, R.P.; Harschneck, T.; Manley, E.F.; Lou, S.J.; Hartnett, P.E.; Yu, X.; Horowitz, N.E.; Burrezo, P.M.; Aldrich, T.J.; Lopez Navarrette, J.T.; Wasielewski, M.; Chen, L.X.; Chang, R.P.H.; Facchetti, A.; Marks, T.J.; J.Am.Chem. Soc. 2015, 137, 12565.

Wafer-Scale SAND for Graphene Electronics  Bottom contact graphene field-effect transistors (G-FETs) on 4 layers of Hf-SAND on 3” wafers  Graphene grown by chemical vapor deposition, transferred on SAND

Optical micrographs of G-FETs on Hf-SAND-4L

 Low operating voltage (±2 V) and negligible hysteresis on Hf-SAND in vacuum  FET = 4,500 cm2/Vs (2x higher than on Si/SiO2) (limited by quality of CVD graphene, not dielectric)  Current saturation with intrinsic gain > 1 Sangwan, Hersam, Marks, APL, 2014; ACS Appl. Mater. Interfaces, 2016, in press

TFT: AryLite/a-ZITO/Al2O3 /In2O3:PVP/ a-ZITO 10-3

Neat In2O3

IDS (A)

12 9

IDS1/2 (µA1/2)

10-5

Original r=15 mm r=13 mm r=10 mm

6 -7

10

10-9 -4

10

3 -1 0 1 2 3 -1 0 1 2 3 VGS (V) VGS (V) 5 % PVP

IDS (A)

8

4 -8

10

10-10

-1 0 1 2 3 -1 0 1 2 3 VGS (V) VGS (V)

Compare to neat In2O3 TFTs fabricated & measured under same conditions

6

IDS1/2 (µA1/2)

10-6

Original r=15 mm r=13 mm r=10 mm

0

Bending radius measurements:

2

SEM: neat In2O3 & In2O3:5%PVP films after bending at r = 10 mm

0



Neat In2O3 films show cracks



In2O3:5%PVP films don’t show cracks

In2O3

Bending radius

In2O3: 5% PVP

Bending times

Chang, Bedzyk, Dravid, Marks, Advan. Mater., 2015, DOI:10.1002/adma.201405400