McGill Autonomous Robotics Team (M.A.R.T.)

Report 6 Downloads 120 Views
McGill  Autonomous  Robotics  Team  (M.A.R.T.)    

   

 

 

MARTy  2.0:  Moving  Forward     s     Abstract   MARTy  2.0  is  an  Autonomous  Underwater  Vehicle  designed  and  constructed  by  a   group  of  students  at  McGill  University.    It  is  a  completely  new  design,  after  several   aspects  of  the  previous  revision  proved  to  be  problematic.    The  center  of  the  new   design  is  a  rectangular  hull  constructed  from  sheets  of  aluminum.    This  provides   better  water  sealing,  easier  access  to  equipment,  and  ideally  placed  windows.     Additionally,  the  hardware  and  software  which  make  up  the  electronic  control   system,  have  been  revised  and  expanded.     Authors   Richard  Cohen,  Philip  Davidson,  David  Goldbaum,  Matthew  Guttman  (Team  Lead),   Christopher  Harvey,  Ghalia  Lahlou,  Matthew  Michini,  Svilen  Savov,  Alan  Schoen,   Vincent  Thompson  (Faculty  Supervisor)    

Introduction   MART’s  goal  is  to  complete  several   objectives  in  the  underwater  robotics   competition  held  by  the  Association   for  Unmanned  Vehicle  Systems   International  (AUVSI)  and  the  Office   for  Naval  Research  (ONR).    In  2010,   we  will  attempt  to  pass  through  the   validation  gate,  follow  the  path,  and   complete  the  life  vest  and  hedge  tasks.     Foundations  for  the  New  Design

CAD  image  of  final  design  

 

In  2009,  MARTy  1.0’s  hull  was  not   watertight.    This  resulted  in  the  loss  of   some  electronics  and  prevented  the   use  of  other  vital  electronics  for  fear  of   damaging  them  as  well.    This   experience  shaped  our  design   decisions  for  the  second  revision:   MARTy  2.0.     Hull   The  central  hull  is  composed  of  a   17”X19”X11”  rectangular  box.    Most  of   this  box  is  composed  of  1/8”   aluminum  sheeting,  which  was  cut,   bent  and  welded  to  the  desired   dimensions.    Two  Lexan  windows,  on   the  front  and  bottom  of  the  hull,  are   used  as  camera  ports.    The  front   window  is  large  to  allow  room  for  the   future  addition  of  cameras  and  to   allow  certain  electronics  to  be  viewed  

M.A.R.T.  

from  outside  the  hull.    

 

Front  view  of  AUV  showing  the  large   window   The  back  of  the  hull  is  open,  and  can   be  sealed  with  a  custom  aluminum   endcap.    The  endcap  is  machined  from   a  solid  19”X11”X7/8”  piece  of   aluminum.    It  has  10  pass-­‐through   ports  for  connecting  external   electronic  components.    The  hull  is   sealed  by  compressing  an  o-­‐ring   between  the  endcap  and  the  hull.    12   screws  distributed  around  the   perimeter  ensure  even  and  constant   distribution  of  pressure.

Detailed  view  of  endcap  

 

External  components  are  mounted  on   a  frame  built  from  80/20  aluminum   bars.    This  allows  modular   components  to  be  added,  removed  

2010  Journal  Paper  

2  

and  adjusted  dynamically.    Several   electronic  parts  are  mounted  on  this   frame:    thrusters,  battery  modules  and   the  depth  sensor.     Batteries  are  housed  in  sealed   compartments  built  from  ABS  tubes.     Each  holds  6  NiMh  D-­‐Cell  batteries.    A   single  2-­‐conductor  wire  connects  each   to  the  main  hull  

The  electronics  rack,  with  endcap  and   o-­ring  visible  

External  battery  compartment  

 

MARTy  uses  to  kinds  of  thrusters.     Two  Seabotix  BTD150  thrusters   provide  forward  and  backward  thrust.     Six  additional  custom  built  thrusters   enable  motion  in  all  other  directions.     The  custom  thrusters  are  built  from   modified  Rule  bilge  pumps.   The  internal  electronics  are  mounted   on  a  rack,  which  is  affixed  to  the   removable  endcap.    The  rack  is   equipped  with  plastic  sliding  rods  to   prevent  friction  with  the  hull  so  it  can   be  removed  easily.  Boards  are   mounted  on  a  large  fiberglass  sheet   which  is  affixed  to  the  rack.  

M.A.R.T.  

  Sensors   MARTy  features  two  logitec  quickcam   cameras  positioned  to  allow   frontward  and  downard  vision.    One   Keller  Levelgage  depth  sensor   measures  the  altitude.    The  4-­‐20  mA   output  is  read  by  an  AVR   microcontroller.    A  Memsense  nIMU   measures  the  heading  of  the  AUV.     Power  System   Power  is  provided  by  12  NiMH  D-­‐Cell   batteries.    The  battery  array  provides   17-­‐20V  power.    A  single  PicoPSU   provides  the  voltages  required  by   electronics.    Power  to  the  thrusters  is   adjusted  dynamically  with  Dimension   Engineering  Sabertooth  motor   controllers.     Computation  and  Communication   The  main  software  system  is  housed   on  a  Lippert  Cool  Roadrunner  4   embedded  computer.    The  computer   runs  an  operating  system  based  on   Debian  Linux.    USB  is  used  for   communication  between  the  main   board  and  an  array  of   microcontrollers,  which  manage  the   AUV’s  assets,  such  as  motor  

2010  Journal  Paper  

3  

controllers,  and  the  depth  sensor.    The   one  exception  is  the  IMU,  which   communicates  through  a  serial   connection.   The  main  software  is  implemented  in   C++  with  extensive  use  of  the  Boost   libraries.    In  addition  the  Eigen  math   library  is  used  for  matrix   computations.    OpenCV  is  used  for  the   visual  system.    We  have  implemented   visual  strategies  for  the  path,  life  vest,   and  hedge  tasks.    Each  uses  a  similar   strategy.    Objects  are  segmented  by   grouping  pixels  according  to  their   color  values  in  CYMK  space.    Ellipse   fitting  is  used  to  determine  the  size   and  orientation  of  objects.    A  variety  of   noise-­‐reduction  and  information-­‐ isolation  strategies  are  used  in   different  stages  of  the  tasks.

Frame  from  the  line-­following  task   processed  with  our  visual  system  

during  the  construction  of  our  hull.     We  also  thank  all  of  our  sponsors.   Gold:  McGill  Engineering   Silver:  Lippert,  Future  Electronics,   McGill  Engineering  Undergraduate   Society   Bronze:  Memsense,  Advanced  Circuits,   Digi-­‐Key,  TSlots,  Anica  Steel,  Fastenal,   Johnston  industrial  plastics,  Verdun   Anodizing,  Keller  America    

 

  Acknowledgements   We  would  like  to  thank  the  McGill   Faculty  of  Engineering  for  the   generous  support,  the  Department  of   Mechanical  Engineering  for  their   administrative  support  and  the  McGill   Engineering  Design  Network  for   providing  space.    We  thank  the  staff   members  of  the  machine  shops  at   McGill  for  their  time  and  knowledge,   which  was  incalculably  valuable  

M.A.R.T.  

2010  Journal  Paper  

4