Mechanical Properties

Report 7 Downloads 147 Views
Mechanical Properties Tension Tests  ­specimen is deformed to fracture with a gradually increasing tensile load that is applied  uniaxially along the long axis of a specimen  ­output of the tensile test is recorded as load or force vs. elongation  ­load­deformation characteristics are dependent on specimen size  ­ex. It takes twice the load to produce the same elongation if the cross sectional area of  the specimen is doubled  ­to minimize these geometrical factors, load and elongation are normalized to respective  parameters of engineering stress and engineering strain  Engineering stress:  F σ= Ao Engineering strain:  l −l ε= f o l0 Compression Tests  ­similar manner to tensile test, except force is compressive so specimen contracts along  the direction of the stress  ­by convention, compressive force = negative  ­tensile tests are more common because they are easier to perform  ­compressive tests used when a material’s behavior under large and permanent strains is  desired such as manufacturing applications or when material is too brittle under tension  Shear and Torsional Tests  ­performed using a pure shear force like in figure below  ­shear strain is defined as tangent of the strain angle  

Geometric Considerations of the Stress State 

­stresses computed act either parallel or perpendicular to planar faces of the bodies  represented in these illustrations  ­stress state is a function of the orientations of the planes upon which stresses are taken to  act  ­more complex stress state is present that consists of a tensile stress σ’ that acts normal to  the p­p’ plane  ­shear stress τ’ acts parallel to this plane  Equations for theses stresses:  σ '=σ (cos θ)2 '

τ =σ sinθ cosθ

Stress­Strain Behavior  σ =Eϵ ­constant of proportionality E = Young’s modulus  ­ modulus of elasticity: ceramics > metals > polymers  ­deformation in which stress and strain are proportional is called elastic deformation  ­greater the modulus, stiffer the material, smaller elastic strain resulting from application  of given stress  ­elastic deformation is nonpermanent  ­some materials have elastic portion of the stress­strain curve which is not linear  ­for this nonlinear behavior, either tangent or secant modulus is used  ­tangent modulus is taken as the slope of the stress strain curve at some specified level of  stress  ­secant modulus represents the slope of a secant drawn from origin to some given point  of the stress­strain curve  ­atomic scale: macroscopic elastic strain is manifested as small changes in interatomic  spacing and stretching of interatomic bonds  ­magnitude of elastic modulus is a measure of the resistance to separation of adjacent  atoms  ­modulus is proportional to slope of the interatomic force separation curve at equilibrium  spacing  ­modulus of elasticity diminishes for all but some of the rubber materials  ­shear stress and strain are proportional to each other through the equation:  τ =Gγ ­G is the shear modulus, slope of linear elastic region of the shear stress­strain curve  Anelasticity  ­it has been assumed before that upon release of the load the strain is totally recovered,  however is most engineering materials there is also a time­dependent elastic strain  component  ­upon load release, some finite time is required for compete recovery  ­time dependent elastic behavior is known as anelasticity 

­it is due to time­dependent microscopic and atomistic processes that are attendant to  deformation  ­metals: anelastic component is normally small and often neglected  ­however, for some polymeric materials this is called viscoelastic behavior  Elastic Properties of Materials  ­if the material is isotropic then Ex = Ey  ­parameter called Poisson’s Ratio is defined as the ratio of the lateral and axial strains  v=

−ε x −ε y = εz εz

­theoretically for iotropic materials, Poisson’s ratio = ¼ ­maximum value for v is 0.50 (no net volume change)  ­for isotropic materials, shear and elastic moduli are related using:  E=2G(1+ v) ­in most metals, G is roughly 0.4E  Mechanical Behavior of Metals  ­elastic deformation persists only to strains of about 0.005  ­as material deforms beyond this point, the stress is no longer proportional to strain  ­permanent (PLASTIC) deformation occurs  ­transition from elastic to plastic is a gradual one for most metals  ­plastic deformation corresponds to the breaking of bonds with original atom neighbors  and reforming bonds with new neighbors as large numbers of atoms or molecules move  relative to each other  Yielding  ­stress level which plastic deformation begins  ­for metals, the point of yielding may be determined as initial departure from linearity of  stress­strain curve  ­elastic plastic transition occurs abruptly in yield­point phenomenon ­at upper yield point, plastic deformation is initiated with an actual decrease in stress  ­yield stress is taken as average stress associated with lower yield point  ­magnitude of yield strength is measure of resistance to plastic deformation  Tensile Strength  ­tensile strength: stress at maximum of engineering stress­strain curve  ­corresponds to maximum stress that can be sustained by structure in tension ­if stress is applied and maintained, fracture will result  ­all deformation to this point is uniform throughout the narrow region of the tensile  specimen  ­at maximum stress a small constriction (neck) begins to form and all subsequent  deformation is confined at this neck  ­fracture strength = stress at fracture 

Ductility  ­measure of degree of plastic deformation sustained at fracture  ­brittle: little or no plastic deformation upon fracture  ­may be expressed quantitatively as percent elongation or percent reduction in area  l −l %EL= f 0 x 100 l0 ­depends on specimen gauge length  ­shorted initial length, greater the fraction of total elongation from neck  A o− A f %RA= x 100 A0 ­percent reduction in area values are independent of initial length and area  ­brittle materials are considered to be those having fracture strain of less than 5%  Resilience  ­capacity of a material to absorb energy when it is deformed elastically and upon  unloading, to have this energy recovered  ­associated property is modulus of resilience Ur , which is the strain energy per unit  volume required to stress a material from an unloaded state up to point of yielding  εy

U r =∫ σ dε o

Assuming a linear elastic region:  2

σ 1 U r = σ y ε y= y 2 2E ­units of resilience are J/m3 Toughness  ­measure of the ability of a material to absorb energy up to fracture  ­ductile materials are tougher than brittle ones  True Stress and Strain 

F Ai li True Strain:  ε T =ln l0 True Stress:  σ T =

If there is no change in volume (Aili = A0l0) then:  σ T =σ (1+ ε) ε T =ln ⁡ ( 1+ε ) ­above equations are only valid to the onset of necking 

For some metals and alloys, the region of true stress­strain from onset of plastic  deformation to the point which necking begins may be approximated by:  σ T =K ε nT where n is the strain hardening exponent  Elastic Recovery after Plastic Deformation  ­upon unloading, some fraction of total deformation is recovered as elastic strain  ­this behavior is demonstrated in the figure below  ­during unloading, curve traces a near­straight line from point of unloading and slpe is  virtually identical to modulus of elasticity  ­magnitude of this elastic strain corresponds to strain recovery  ­if load is reapplied, curve will traverse the same linear portion in the direction opposite  to unloading  ­yielding will occur at unloading stress level where unloading began 

Compressive, Shear and Torsional Deformation  ­stress­strain behavior similar to tensile counterpart  ­no maximum for compression (because there is no necking)  ­mode of fracture will be different from that for tension  Mechanical Behavior of Ceramics  ­main disadvantage is a disposition to catastrophic fracture in a brittle manner w/ little  energy absorption  Flexural Strength  ­difficult to prepare/test specimens with required geometry  ­difficult to grip brittle materials without fracture and only fail after about 0.1% strain,  which requires tensile specimens be perfectly aligned to avoid bending stresses  ­therefore, three point loading scheme to test mechanical properties

Influence of Porosity  ­subsequent to compaction or formation of powder particles into desired shape, pores or  void spaces will exist between powder particles  ­during heat treatment, porosity will be eliminated  ­however some porosity will remain, for some ceramic materials the magnitude of  modulus of elasticity E decreases with volume fraction porosity P according to:  E=E o (1−1.9P+ 0.9 P2 ) where E0 is the modulus of elasticity of the nonporous material  Porosity is harmful to flexural strength: pores reduce cross sectional area and act as stress  concentrators  ­flexural strength decreases exponentially with volume fraction porosity (P) as:  σ fs =σ 0 exp ⁡ ( −nP) Mechanical Behavior of Polymers 

­mechanical properties of polymers are much more sensitive to temperature changes near  room temperature  ­increasing temperature =  1) decrease in elastic modulus  2) reduction in tensile strength  3) enhancement in ductility  ­decreasing the rate of deformation has same effect as increasing temperature  Macroscopic Deformation  ­at upper yield point, a small neck forms within the gauge section of the specimen  ­within this neck, chains become oriented (aligned parallel to elongation direction)  ­this leads to localized strengthening  ­resistance to continued deformation at this point, specimen elongation proceeds by  propagation of neck region along gauge length  ­this can be contrasted to ductile metals, where all deformation is confined to neck

Viscoelastic Deformation  ­for intermediate temperatures, polymer is a rubbery solid that exhibits combined  mechanical characteristics of two extremes  ­this is called viscoelasticity  ­for viscous materials, deformation is delayed or dependent on time  ­deformation is not reversible or completely recovered after the stress is released  Viscoelastic Relaxation Modulus 

­specimen is initially strained rapidly to a predetermine low strain level  ­stress necessary to maintain this strain is measured as a function of time, temp constant  ­stress is found to decrease with time due to molecular relaxation process  ­relaxation modulus Er(t), time dependent elastic modulus for viscoelastic polymers  σ (t) E r ( t )= ε0

­at lowest temperatures (glassy region), material is rigid and brittle  ­relaxation modulus is virtually independent of temperature  ­as temperature increases, relaxation modulus drops by about a factor of 1000 within a 20  degree Celsius temperature span  ­this is called the leathery or glass transition region  ­glass transition lies near the upper temperature extremity  ­a polymer specimen will be leathery, deformation will be time dependent and not  completely recoverable upon release of load  ­within rubbery plateau temperature region, both elastic and viscous components are  present  ­deformation is easy to produce  ­material experiences a gradual transition to a soft rubbery state during rubbery flow and  viscous flow 

­rubbery flow region: very viscous liquid that exhibits both elastic and viscous flow  components  ­viscous flow region: modulus decreases dramatically with increasing temperature  ­deformation is entirely viscous and essentially no elastic behavior occurs  ­rate of stress application influences viscoelastic characteristics  ­increasing loading rate = lowering temperature  Viscoelastic Creep  ­many polymeric materials are susceptible to time­dependent deformation when stress  level is held constant, such deformation = viscoelastic creep  ­may be significant even at room temperature and under modest stresses  ­creep test: stress is applied instantaneously and maintained at constant level while strain  is measured as function of time  Results represented by creep modulus:  σ E c ( t )= 0 ε (t) ­temperature sensitive and diminishes with increasing temperature  ­susceptibility to creep decreases as degree of crystallinity increases  Hardness  ­measure of a material’s resistance to localized plastic deformation  ­small indenter is forced onto surface of material under controlled load and rate of  application  ­depth or size of resulting indentation is measured  ­performed more frequently than any other mechanical test because:  1) simple and inexpensive  2) nondestructive  3) other mechanical properties can be estimated 

Atomic Structure and Interatomic Bonding Fundamental Concepts  Atomic number (Z) – number of protons  Atomic mass (A) – sum of masses of protons and neutrons within nucleus  Atomic weight – weighted average of the atomic masses of an atom’s naturally occurring  isotopes  Bohr atomic model – electrons assumed to revolve around atomic nucleus in discrete  orbitals. Wavicle model was later adopted (lol visit dennismercier.com)  Principal quantum number (n) – shell of electron (n = 1,2,3,4…)  Angular quantum number (l) ­ shape of the orbital Magnetic quantum number (ml) ­ number of orbitals and their orientation within a  subshell Electron spin quantum number (ms) ­ designates the direction of the electron spin and  may have a spin of +1/2, represented by↑, or –1/2, represented by ↓ Bonding Forces and Energies 

Primary Interatomic Bonds 

Ionic Bonding 

−A r B For repulsive energy:  E R= n r For attractive energy:  E A =

Covalent Bonding  ­sharing of electrons between adjacent atoms  ­covalent bond is directional  2 ionic character= 1−exp [−( 0.25 ) ( X A −X B ) ] ×100

{

}

Metallic Bonding  ­valence electrons form an electron cloud  ­remaining non­valence electrons and atomic nuclei form ion cores, which posses a net  positive charge equal in magnitude to total valence electron charge per atom  ­non­directional: free electrons shield positively charged ion cores from mutually  repulsive electrostatic forces 

Secondary Van der Waals Bonding  ­arise from atomic or molecular dipoles ­bonding results from coulombic attraction between positive end of one dipole and  negative region of an adjacent one  Fluctuating Induced Dipole Bonds  ­all atoms experience constant vibrational motion and can cause instantaneous and short­ lived distortions of electrical symmetry for some atoms/molecules  ­dipoles produce a displacement of electron distribution of adjacent atom  ­temporary and fluctuate with time 

Polar Molecule Induced Dipole Bonds  ­polar molecules have permanent dipole moments by asymmetrical arrangement of  positively and negatively charged regions  ­can induce dipoles in adjacent nonpolar molecules 

Permanent Dipole Bonds  ­exist between adjacent polar molecules  ­bond energies significantly greater than bonds with induced dipoles  ­hydrogen bond is special case of polar molecule bonding  ­melting and boiling temperature for hydrogen fluoride and water are abnormally high  because of their low molecular weights + hydrogen bonding 

Molecules  ­relatively low melting and boiling temperatures  ­small molecules usually exist as gases at ambient temperatures/pressure  ­many modern polymers (molecular materials of large molecules), properties are strongly  dependent  on presence of van der Waals and hydrogen bonds 

Crystal Structures Definitions Crystalline material – one in which atoms are situated in a repeating or periodic array  over large atomic distances  Amorphous or noncrystalline material – long­range atomic order is absent  Polymorphous ­ crystallization into two or more chemically identical but  crystallographically distinct forms  Crystal structure ­ manner in which atoms, ions or molecules are spatially arranged  Lattice – three­dimensional array of points coinciding with atom positions  Coordination number – number of touching atoms  Atomic Packing Factor (APF) = volume of atoms in unit cell/total unit cell volume  Planar Packing Factor (PPF) = area of atoms per face/total face area  Linear Packing Factor (LPF) = length of atoms along direction/total length of direction

Unit Cells 

­smallest repeating entity in a crystal structure  ­usually parallelepipeds or prisms 

Metallic Crystal Structure  Face­Centered Cubic Crystal Structure (FCC)  ­atoms located at each of the corners and centers of all cube faces  ­example: copper, aluminum, silver, gold  ­spheres (ion cores) touch across a face diagonal  a=2R √ 2 ­total of four atoms in a given unit cell  ­coordination number: 12  ­APF: 0.74 

Body­Centered Cubic Crystal Structure (BCC)  ­atoms located at all eight corners and a single atoms in center  ­atoms touch along cube diagonals  4R a= √3 ­examples: chromium, iron, tungsten  ­two atoms per unit cell  ­coordination number: 8  ­APF: 0.68 

Hexagonal Close­Packed Crystal Structure 

­top and bottom faces of unit cell consist of six atoms that form regular hexagons around  a center atom  ­another plane provides three additional atoms between top and bottom planes  ­six atoms total in each unit cell (1/6 of the 12 top and bottom corner atoms, ½ of each of  the top and bottom center atoms and the 3 interior atoms)  ­ideal c/a value is 1.633   ­coordination number: 12  ­APF: 074 (both same as FCC)  ­examples: cadmium, magnesium, titanium, zinc 

Density Computations  nA VCN A where:  n = number of atoms  A = atomic weight  VC = volume of unit cell  NA = Avogadro’s number  p=

Ceramic Crystal Structure 

­since composed of at least two elements, crystal structure is more complex  ­range from purely ionic to totally covalent  ­for materials in which atomic bonding is predominantly ionic, the crystal structures may  be thought of as being composed of electrically charged ions instead of atoms  ­cations: positively charged metallic ions (because cats are happy) 

­anions: negatively charged nonmetallic ions  ­two characteristics of ions influence crystal structure ­> magnitude of electrical charge on each of the ions  ­> relative sizes of cations and anions  ­crystal must be electrically neutral (ie. cation positive charges must be balanced by an  equal number of anion negative charges)  ­cations prefer to have as many nearest neighbor anions as possible  ­therefore, coordination number is related to the cation­anion radius ratio  ­for a specific coordination number, there is a critical (minimum) rC/rA ratio  Note: relationships between CN and cation anion ratios are based on geometrical  considerations and are approximations. Therefore there are some exceptions 

AX­Type Crystal Structure 

­some common ceramic materials have equal numbers of cations and anions  ­these are referred to as AX compounds, where A denotes the cation and X the anion  ­there are several different crystal structures for AX compounds, each named after a  common material that assumes the particular structure  Rock Salt Structure (Sodium Chloride NaCl)  ­CN: 6  ­one cation situated at cube center and ine at the center of each of the 12 cube edges  ­two interpenetrating FCC lattices, one composed of cations, other of anions  ­example: NaCl, MgO, MnS, LiF and FeO ­FCC

Cesium Chloride Structure  ­coordination number is 8 for both ion types  ­anions are located at each of the corners of the cube, cube center is a single cation  ­this is not a BCC because ions of two different kinds are involved  ­simple cubic 

Zinc Blende Structure  ­CN: 4  ­zinc blende: ZnS 

­all corner and face positions of cubic cell are occupied by sulfur atoms while zinc atoms  fill interior tetrahedral positions  ­equivalent structure results if atom positions are reversed  ­each Zn atom is bonded to four S atoms and vice versa  ­FCC

Fluorite (CaF2) ­AX2 type  ­ionic radii ratio is about 0.8, therefore CN is 8  ­calcium ions are positioned at the centers of cubes with fluorine ions at corners  ­crystal structure is similar to CsCl except only half of the center cube positions are  occupied by Ca ions  ­one unit cell consists of eight cubes  ­other examples: ZrO2, UO2, PuO2 and ThO2  ­simple cubic 

Perovskite (BaTiO3)  ­Ba ions are situated at all eight corners  ­single Ti is at the cube center  ­Oxygen ions located at the center of each of the six faces  ­FCC  Density Computations for Ceramics  AA ∑ AC + ∑ ¿ ¿ n' ¿ p=¿ where: n’ – number of formula units  ∑ AC  – sum of atomic weights of all cations in formula unit 

Silicate Ceramics 

­materials composed primarily of silicon and oxygen  ­rather than characterizing the crystal structures of these materials in terms of unit cells, it  is more convenient to use various arrangements of an SiO4 4­ tetrahedron  ­each atom of silicon is bonded to four oxygen atoms, which are situated at the corners of  the tetrahedron with silicon atom positioned at the center  ­not considered ionic because there is a significant covalent character which is directional  and relatively strong  ­various silicate structures arise from the different ways in which the tetrahedron units  can be combined into one, two or three­dimensional arrangements  Silica  ­most simple silicate material  ­structurally, it is a 3­D network generated when the corner oxygen atoms in each  tetrahedron are shared by adjacent tetrahedra  ­thus the material is electrically neutral and all atoms have stable electronic strucures  ­ratio of Si to O atoms is 1:2  ­three primary polymorphic crystalline forms: quartz, cristobalite and trydymite  ­atoms are not closely packed together, relatively low densities  ­high melting temperature of Si­O bond  Silicates  ­one two or three of the corner oxygen atoms are shared by other tetrahedral  

Simple Silicates  ­most structurally simple ones involve isolated tetrahedra  ­Si2O7 ion is formed when two tetrahedral share a common oxygen atom  Layered Silicates  ­two dimensional sheet or layered structure can be produced by sharing of three oxygen  ions in each of the tetrahedral  ­repeating unit formula may be represented by (Si2O5)2­ ­net charge comes from unbonded oxygen atoms projecting out of plane  ­electroneutrality is ordinarily established by a second planar sheet structure having an  excess of cations  ­found in clay and other minerals 

Carbon 

­exists in various polymorphic forms as well as amorphous state  ­does not fall in any of the metal, polymer or ceramic classifications  ­graphite is sometimes classified as ceramic though  Diamond  ­metastable carbon polymorph at room temperature and atmospheric pressure  ­crystal structure is a variant of the zinc blende, in which carbon atoms occupy all  positions (both Zn and S)  ­bonds are totally covalent, called the diamond cubic crystal structure 

Graphite  ­crystal structure is more stable than diamond at ambient temperature and pressure  ­composed of layers of hexagonally arranged carbon atoms, within the layers each carbon  atom is bonded to three coplanar neighbor atoms by strong covalent bonds  ­fourth bonding electron participates in a weak van der Waals type of bond 

Fullerenes  ­polymorphic form of carbon  ­exists in discrete molecular form and consists of a hollow spherical cluster of sixty  carbon atoms, single molecule is denoted by C60 ­each molecule is composed of groups of carbon atoms that are bonded to each other to  form both hexagon and pentagon geometrical configurations  ­pure crystalline solid, packed together in a face centered cubic array  ­electrically insulating but can be made highly conductive 

Polymorphism and Allotropy 

­some metals may have more than one crystal structure, phenomenon called  polymorphism  ­when found in elemental solids, condition is called allotropy  ­prevailing crystal structure depends on both temperature and external pressure  ­one example is found in carbon: graphite is stable polymorph at ambient conditions,  whereas diamond is formed at extremely high pressures  ­most often, physical properties are modified by a polymorphic transformation 

Crystal Systems 

­lattice parameters: edge lengths (a,b,c) and three interaxial angles(alpha, beta and  gamma)  ­seven different possible combinations of a, b and c and alpha, beta and gamma each of  which represents a distinct crystal system  ­seven crystal systems are cubic, tetragonal, hexagonal, orthorhombic, rhombohedral  (trigonal), monoclinic and triclinic  ­both FCC and BCC structures belong to cubic crystal system  ­HCP is hexagonal 

Hexagonal Indices 

[u’ v’ w’] ­> [u v t w] 1 u= (2 u' −v ' ) 3 1 v = (2 v ' −u ' ) 3 t=−(u+ v) w=w '

Crystallographic planes 

­if the plane passes through the selected origin than either a parallel plane must be  constructed or a new origin must be established in the corner of another unit cell 

­crystallographic plane either intersects or parallels each of the three axes  ­reciprocals of intersects are taken  ­number a chanted to a set of integers using a common factor  ­indices are enclosed by parantheses  ­for cubic crystals: planes and directions having the same indices are perpendicular to one  another  ­family of planes: contains all planes that are crystallographically equivalent (same  atomic packing)  ­family is indicated by indices enclosed in braces i.e. {1 0 0}  ­for cubic systems: all planes having the same indices, irrespective of order and sign  belong to the same family (example both (1 2 3) and (3 1 2) are part of the (1 2 3) family  Hexagonal Crystals  ­equivalent planes have same indices  ­four index (hkil) scheme  ­I is determined by the sum of h and k through I = ­(h+k) ­h, k and l indices are identical for both indexing systems  Ceramics  ­interstital sites exist in two different types  ­tetrahedral position: four atoms surround one type  ­octahedral position: six ion spheres  ­for each anion sphere, one octahedral and two tetrahedral positions will exist  ­Ceramic crystal structures depend on two factors: stacking of close packed anion layers  and manner in which interstitial sites are filled with cations    Single Crystal  ­periodic and repeated arrangement of atoms extends throughout the entirety of the  specimen without interruption  ­all unit cells interlock the same way and have the same orientation  ­exist in nature but may also be produced artificially  Polycrystalline Materials  ­most crystalline solids are composed of a collection of many small crystals or grains  ­small crystals or nuclei form at various positions  ­random crystallographic orientations indicated by the square grids  ­small grains grow y the successive addition from the surrounding liquid of atoms to the  structure of each  ­extremities of adjacent grains impinge on one another as the solidification process  approaches completion  ­crystallographic orientation varies from grain to grain  ­exists some atomic mismatch within the region where two grains meet (grain boundary) 

Anisotropy 

­physical properties of single crystals depend on the crystallographic direction in which  measurements are taken 

­example: elastic modulus, electrical conductivity and index of refraction have different  values in the [100] and [111] directions  ­directionality of properties is called anisotropy  ­associated with variance of atomic or ionic spacing with crystallographic direction ­isotropic: substances in which measured properties are independent of direction  ­extent and magnitude of anisotropic effects in crystalline materials are dependent on the  symmetry of the crystal structure  ­degree of anisotropy increases with decreasing structural symmetry – triclinic structures  are normally highly anisotropic  ­for many polycrystalline materials, crystallographic orientations of individual grains are  total random  ­even though each grain may be anisotropic, specimen composed of the grain aggregate  behaves isotropically  ­magnitude of measured property represents some average of the directional values  ­materials with a preferential crystallographic orientation are said to have “texture”  ­magnetic properties of some iron alloys used in transformer cores are anisotropic  ­grains magnetize in a  type direction more easily than in any other  crystallographic direction  ­energy losses in transformer cores are minimized by utilizing polycrystalline sheets of  these alloys into which have been introduced a “magnetic texture” 

X­Ray Diffraction 

­diffraction occurs when a wave encounters a series of regularly spaced obstacles that are  capable of scattering the wave and have spacings that are comparable in magnitude to the  wavelength  Bragg’s Law  nλ=2 d hkl sinθ where:  n – order of reflection  d – interplanar spacing (magnitude of distance between two adjacent and parallel planes  of atoms)  For crystals with cubic symmetry:  a d hkl= 2 2 2 √ h +k +l Bragg’s law is a necessary but not sufficient condition for diffraction by real crystals  ­specifies when diffraction will occur for unit cells having atoms positioned only at cell  corners  ­atoms situated at other sites act as extra scattering centers which can produce out of  phase scattering  Diffractometer 

­apparatus used to determine the angles at which diffraction occurs for powdered  specimens  ­specimen S in the form of a flat plate is supported so rotations about the axis labeled O  are possible  ­axis is perpendicular to plane of the page  ­monochromatic x­ray beam is generated at point T and intensities of diffracted beams  are detected with a counter labeled C in the figure  ­specimen, x­ray source and counter are all copla the ease with which nar  ­counter is mounted on a movable carriage that may also be rotated about the O axis 

Noncrystalline Solids 

­noncrystalline solids lack a systematic and regular arrangement of atoms over relatively  large atomic distances  ­sometimes such materials are also called amorphous  ­whether a crystalline or amorphous solid forms depends on the ease with which a  random atomic structure in the liquid can transform to an ordered state during  solidification  ­amorphous materials are characterized by atomic or molecular structures that are  relatively complex and become ordered only with some difficulty  ­rapidly cooling through freezing temperature favours the formation of a noncrystalline  solid since little time is allowed for the ordering process  ­metals normally form crystalline solids  ­inorganic gases are amorphous  ­polymers may be completely noncrystalline consisting of varying degrees of crystallinity  ­silicon dioxide in the noncrystalline state is called fused silica  ­common inorganic glasses are used for containers, windows etc. are silica glasses which  have been added to other oxides   

Polymer Structures 

Polymer Molecules ­macromolecules: molecules in polymers  ­repeat units: structural entities successively repeated along the chain  ­monomer: small molecule from which a polymer is synthesized 

­when all repeating units along a chain are of the same type, resulting polymer is a  homopolymer  ­chains may be composed of two or more different repeat units called copolymers 

­bifunctional: monomers with an active bond that may react to form two covalent bonds  with other monomers forming a 2­D chain like molecular structure  ­functionality: number of bonds a given monomer can form  Molecular Weight  ­number­average  molecular weight is obtained by dividing the chains into a series of size  ranges and determining the number fraction of chains within each size range  M n= ∑ x i M i Where  Mi ­ mean (middle) molecular weight of size range i ­xi is the fraction of total number of chains within corresponding range  Alternative way: degree of polymerization (DP) = average number of repeat units in  chain  DP=

Mn m

Where m is the repeat unit molecular weight  ­polymer properties are affected by the length of polymer chains  ­example: melting or softening temperature increases with increasing molecular weight  ­at room temp: polymers with short chains exist as liquids  ­polymers with weights of approximately 1000 g/mol are waxy solids  ­solid polymers have molecular weights ranging between 10, 000 to several million g/mol Molecular Shape  ­some of the mechanical and thermal characteristics of polymers are a function of the  ability of chain segments to experience rotation in response to applied stresses or thermal  vibrations  ­rotational flexibility is dependent on repeat unit structure and chemistry  ­example: region of a chain segment with double bond is rotationally rigid  Linear Polymers  ­repeat units are joined together end to end in single chains  ­long chains are flexible (may be thought of as a mass of spaghetti)  ­extensive van der Waals and hydrogen bonding ­some common polymers are polyethylene, PVC, polystyrene, nylon and fluorocarbons  Branched Polymers  ­may be synthesized where side­branch chains are connected to the main ones  ­branches may result from side reactions that occur during the synthesis of the polymer  ­chain packing efficiency is reduced with the formation of side branches which results in  a lowering of the polymer density  ­polymers that form linear structures may also be branched 

Crosslinked Polymers  ­adjacent linear chains are joined to one another at various positions by covalent bonds  ­process is achieved during synthesis or a nonreversible chemical reaction  ­crosslinking is accomplished by additive atoms or molecules that are covalently bonded  to the chains  ­in rubbers this is called vulcanization  Network Polymers  ­multifunctional monomers forming three or more active covalent bonds make 3­D  networks  ­distinctive mechanical and thermal properties  ­examples: epoxies, polyurethanes, phenol­formaldehyde  Note: polymers are usually not only one distinctive structural type 

Molecular Configurations  ­for polymers having more than one side atom or group bonded to the main chain:  regularity and symmetry of side group arrangement can significantly influence the  properties

­in most polymers, the head to tail configuration predominates, often a polar repulsion  occurs between R groups for the head­to­head configuration  ­isomerism is found in polymer molecules where different configurations are possible for  same composition   Stereoisomerism  ­denotes situation in which atoms are linked together in the same order but differ in  spatial arrangement  ­specific polymer has many configurations; predominant form depends on method of  synthesis 

a) isotactic 

b) syndiotacticc) atactic 

Thermoplastic Polymers  ­behaviour in response to rising temperature  ­thermoplastics soften when heated, harden when cooled  ­molecular level: as temperature increases, secondary bonding forces are diminished so  that the relative movement of adjacent chains is facilitated when stress is applied  ­irreversible degradation occurs when a molten thermoplastic is raised to too high of a  temperature  ­most linear polymers and those having branched structures with flexible chains are  thermoplastic  ­these materials are normally fabricated by simultaneous application of heat and pressure  ­examples of common thermoplastic polymers include polyethylene, PVC and  polystyrene  Thermosetting Polymers  ­network polymers  ­become permanently hard during formation, do not soften upon heating  ­covalent crosslinks between adjacent molecular chains  ­during heat treatment, bonds anchor chains together to resist the vibrational and  rotational chain motions at high temperatures  ­10 – 50% of chain repeat units are crosslinked  ­heating to excessive temperatures causes severance of crosslink bonds and polymer  degradation  ­generally harder and stronger than thermoplastics  ­better dimensional stability Copolymers  m=∑ f j m j where:  f – mole fraction  m – molecular weight of repeat unit j 

Polymer Crystallinity  ­may exist in polymeric materials  ­atomic arrangements will be more complex for polymers  ­packing of molecular chains to produce an ordered atomic array  ­molecular substances with small molecules are normally either totally crystalline or  totally amorphous  ­degree of crystallinity by weight can be determined according to: 

­depends on rate of cooling during solidification as well as chain configuration  ­during crystallization upon cooling through the melting temperature, chains assume an  ordered configuration 

­for linear polymers, crystallization is easily accomplished because there are few  restrictions to prevent chain alignment  ­branched polymers are never highly crystalline  ­network and crosslinked polymers are almost completely amorphous because crosslinks  prevent polymer chains from rearranging and aligning  ­atactic polymers are difficult to crystallize  ­isotactic and syndiotactic crystallize much more easily because of regularity of geometry  ­copolymers: the more irregular and random, the greater the tendency for development of  noncrystallinity  ­alternating/block copolymers have some likelihood of crystallization  ­crystalline polymers are usually stronger and more resistant to dissolution and softening  by heat 

Imperfections in Solids Point Defects in Metals  Vacancy  ­atom is missing from a lattice site  ­all crystalline solids contain vacancies  ­presence of vacancies increases entropy of crystal  ­equilibrium number of vacancies Nv for a given quality of material depends on increases  with temperature according to:  −Q v N v =N × exp( ) kT where:  N – total number of atomic sites  Qv – energy required  T – absolute temperature in Kelvins  k – Boltzmann’s constant  ­Nv/N is usually on the order of 10­4 (1/10 000 lattice sites will be empty)  ­self­interstital: atom from crystal that is crowded into an interstitial site, a small void  space that is ordinarily not occupied  ­formation of this defect is not highly probable  Point Defects in Ceramics  ­since ceramic materials contain ions of at least two kids, defects for each ion type may  occur  ­highly improbably there are appreciable concentrations of anion interstitals  ­defect structure: used to designate the types and concentrations of atomic defects in  ceramics  ­electroneutrality: state that exists when there are equal numbers of positive and negative  charges from the ions  ­conditions of electroneutrality must be maintained in ceramics  ­as a consequence, defects in ceramics do not occur alone  ­Frenkel defect: cation vacancy and cation interstitial pair  ­cation leaves normal position and moves into an interstitial site  ­no change in charge because cation maintains same positive charge as interstitial  ­Schottky defect: cation vacancy­anion vacancy pair  ­occurs in AX materials, removes one cation and one anion from interior of crystal and  placing them both at an external surface  ­if no other defects are present, material is stoichiometric  ­nonstoichiometry occurs when two valence states exist for one of the ion types (ex. Iron  with multiple oxidation states)  ­number of each ion types depends on temperature and ambient oxygen pressure  −Q fr −Q s N fr =N × exp( ) ¿ N s=N ×exp ( ) 2kT 2kT Impurities in Solids 

Metals  ­most metals are alloys: impurity atoms have been added intentionally to impart specific  characteristics to the material  ­alloying is used to improve mechanical strength and corrosion resistance  ­addition of impurity atoms results in formation of solid solution  Solid Solution  ­forms when solute atoms are added to host material  ­crystal structure is maintained and no new structures are formed  ­compositionally homogeneous: impurity atoms are randomly and uniformly dispersed  within solid  ­two types of impurity point defects: substitutional and interstitial  ­substitutional: solute or impurity atoms replace or substitute for host atoms  ­four features of solvent and solute atoms determine degree it dissolves:  1. Atomic size factor: appreciable quantities of a solute may be accommodated in this  type of solid solution only when difference in atomic radii between two atom types is less  than about 15%. Otherwise, solute atoms will create substantial lattice distortions and a  new phase will form  2. Crystal structure: for appreciable solid solubility, crystal structures of metals for both  atom types must be the same  3. Electronegativity: more electropositive one element and the more electronegative the  other, greater the likelihood that they will form an intermetallic compound instead of a  substitutional solid solution  4. Valences: other factors being equal, a metal will have a stronger tendency to dissolve  another metal of higher valency than one of lower valency  Impurities in Ceramics  ­impurity atoms can form solid solutions in ceramic materials as well  ­interstitial: ionic radius of the impurity must be relatively small in comparison to anion  ­substitutional: impurity will substitute for the host ion to which it is most similar in  electrical sense (i.e. if impurity atom normally forms a cation in a ceramic material, it  will probably substitute for a host cation)  ­to achieve any appreciable solid solubility of substituting impurity atoms, ionic size and  charge must be very nearly the same as those of one of the host ions  ­for impurity ion having a charge different from host ion for which it substitutes, crystal  must compensate for this difference in charge so electroneutrality is maintained with  solid Point Defects in Polymers ­similar to those found in metals in crystalline regions of polymeric materials  ­chain ends are considered defects because they are chemically dissimilar to normal chain  units  ­vacancies are also associated with chain ends  Specification of Composition 

Weight Percent  ­for an alloy that contains two hypothetical atoms denoted by 1 and 2, concentration of 1  in wt%, C1 is defined as  m1 C1= × 100 m1+m2  Atom Percent ­number of moles of an element in relation to total moles of elements in alloy  ­number of moles in some specified mass of element 1 is:  m'1 nm1= A1 Concentration in terms of atom percent of element 1 in an alloy containing 1 and 2 atoms  C1’ is: nm1 ' C1 = ×100 n m1+ nm2 Composition Conversions  ­sometimes it is necessary to convert from one composition scheme to another (i.e.  weight percent to atom percent)  Equations for converting between compositions: 

Sometimes it is necessary to convert concentration from wt% to mass of one component  per unit volume of material. Equations are: 

To determine density and atomic weight of a binary alloy: 

Dislocations  ­linear or one  atoms which are 

dimensional defect around some  misaligned 

Edge  dislocation ­extra portion of  plane of atoms, the edge of which  terminates  within the crystal  ­linear defect  that centers around line that is  defined along  end of extra half­plane of atoms  ­dislocation line:  perpendicular to plane of the page  ­within this  region there is localized lattice  distortion  ­atoms above  dislocation line are squeezed  together, those  below are pulled apart  ­reflected in  slight curvature for vertical planes of  atoms as they  bend around this extra half­plane  ­magnitude of  distortion decreases with distance  away from dislocation line  ­at far removed positions, crystal lattice is virtually perfect  ­edge dislocation represented by ┴   ­may also be formed by extra half plane of atoms in bottom portion of crystal, indicated  by T  Screw dislocation  ­formed by shear stress applied to produce distortion shown in figure below  ­upper front region of crystal shifted one atomic distance to the right relative to bottom  portion  ­atomic distortion associated with screw dislocation is also linear and along a dislocation  line  ­planes of atoms form spiral or helical path traced around dislocation line  Mixed dislocation ­most dislocations exhibit combinations of screw and edge  Burgers vector ­magnitude and direction of lattice distortion associated with a dislocation  ­denoted by b  ­nature of a dislocation is defined by relative orientations of dislocation line and Burgers  vector  edge: perpendicular  screw: parallel  mixed: neither perpendicular or parallel  ­even though dislocation changes direction and nature within a crystal, Burgers vector  will be same at all points along line 

­for metallic materials, Burgers vector will point in a close packed crystallographic  direction and be of magnitude equal to interatomic spacing  Edge dislocation: 

Interfacial Defects  ­boundaries that have two dimensions and normally  separate regions of materials with different crystal  structures and/or crystallographic orientations 

total surface area  Grain Boundaries 

External Surfaces  ­surface atoms are not bonded to maximum number  of nearest neighbours  ­higher energy state than atoms at interior positions  ­bonds that are not satisfied give rise to a surface  energy  ­to reduce this energy, materials tend to minimize 

­some atomic mismatch in a transition from crystalline orientation of one grain to that of  an adjacent one  ­when orientation mismatch is light, small (or low) angle grain boundary is used  ­boundaries can be described in terms of dislocation arrays  ­one simple small angle grain boundary is formed when edge dislocations are aligned in  manner of the figure below  ­this is called a tilt boundary  ­twist boundary: angle of misorientation is parallel to boundary, described by an array of  screw dislocations  ­atoms are bonded less regularly along a grain boundary  ­interfacial or grain boundary energy similar to surface energy described above  ­magnitude of energy is function of degree of misorientation (larger for high angle  boundaries)  ­grain boundaries are more chemically reactive as a consequence of boundary energy  ­impurity atoms often preferentially segregate along boundaries because of their higher  energy state  ­total interfacial energy is lower in large or coarse grained materials than fine grained  ones  ­grains grow at elevated temperatures to reduce total boundary energy 

 Tilt boundary

Phase Boundaries  ­exist in multiphase materials  ­each of the constituent phases has its own distinctive physical/chemical properties  Twin Boundaries  ­special type of grain boundary  ­specific mirror lattice symmetry  ­atoms on one side of the boundary are located in mirror image positions of atoms on  other side  ­result from atomic displacement that are produced from applied mechanical shear forces  ­during annealing heat treatments following deformation 

­twinning also occurs on a definite crystallographic plane and in specific direction, both  of which depend on crystal structure  ­annealing twins are typically found in metals with FCC structure  ­mechanical twins are observed in BCC and HCP metals 

Stacking Faults  ­interruption in ABCABCABC stacking sequence of close packed planes  Ferromagnetic Domain Walls  ­boundary that separates regions having different directions of magnetization is termed a  domain wall  ­surfaces of chain folded layers and boundaries between adjacent crystalline regions are  considered to be interfacial defects  ­magnitude associated with interfacial energy varies from material to material  ­interfacial energy will be greatest for external surfaces and least for domain walls  Bulk or Volume Defects  ­other defects that are much larger than the ones above exist in all solid materials (i.e.  pores, cracks, foreign inclusions and other phases)  ­normally introduced during processing and fabrication steps  Atomic Vibrations  ­every atom in solid material is vibrating very rapidly about its lattice position within  crystal  ­may be thought of as imperfections  ­at any instant in time, not all atoms vibrate at same frequency and amplitude or with  same energy  ­at a given temperature, there will exist a distribution of energies for constituent atoms  about an average energy  ­over time, vibrational energy of any specific atom will vary in a random manner 

Deformation and Strengthening Mechanisms Dislocations  ­slip: process which plastic deformation is produced by dislocation motion  ­slip plane: crystallographic pane along which dislocation line traverses  ­dislocation motion is analogous to motion of a caterpillar  ­dislocation density: number of dislocations that intersect a unit area of a random section  or total dislocation length per unit volume  Characteristics of Dislocations  ­when metals are plastically deformed, approximately 5% of deformation energy is  retained internally, remainder dissipated as heat  ­major portion of this stored energy is strain energy associated with dislocations  ­there are regions in which compressive, tensile and shear lattice strains are imposed on  neighboring atoms (ex. Atoms immediately above and adjacent to dislocation line are  squeezed together)  ­atoms may be thought of as experiencing a compressive strain relative to atoms  positioned in perfect crystal and far removed from dislocation  ­shear strains also exist in vicinity of edge dislocation  ­for a screw dislocation, lattice strains are pure shear only  ­lattice distortions may be considered to be strain fields that radiate from dislocation line  ­strains extend to surrounding atoms and magnitude decreases with radial distance from  the dislocation  ­strain fields surrounding dislocations in close proximity may interact in such a way that  forces are imposed on each dislocation by combined interactions of all neighboring  dislocations  ­Example: consider two edge dislocations that have the same sign and identical slip  plane. Compressive and tensile strain fields for both lie on same side of slip plane; strain  field interaction is such that there exists between these two isolated dislocations a mutual  repulsive force that tends to move them apart  ­two dislocations of opposite sign and having same slip plane will be attracted to one  another  Slip Systems  ­slip plane: preferred plane which dislocation motion occurs  ­plane with greatest planar density  ­slip direction: direction of movement ­direction with highest linear density  ­combination of slip plane and direction is called slip system  ­depends on crystal structure of metal and is such that atomic distortion that accompanies  motion of dislocation is minimum 

Possible slip systems for BCC and HCP crystal structures: 

Burgers vector for FCC, BCC, HCP:  a b ( FCC )= ¿ 2 a b ( BCC )= ¿ 2 a b ( HCP )= ¿ 3 Slip in Single Crystals 

degrees  ­under these conditions: σy = 2τCRSS

­resolved shear stresses: shear components exist at all  but parallel or perpendicular alignments to stress  direction ­magnitudes depend not only on applied stress but  also orientation of both slip plane and direction within  plane  ­let ϕ be the angle between normal to slip plane and λ  the angle between slip and stress directions τ R=σ cos ϕ cos λ ­slip begins on most favourably oriented slip system  when resolved shear stress reaches critical resolved  shear stress (τCRSS) ­represents minimum shear stress required to initiate  slip  ­determines when yielding occurs  ­magnitude of applied stress required for yielding:  τ CRSS σ y= (cos ϕ cos λ)max ­minimum stress required to introduce yielding occurs  when a single crystal is oriented such that ϕ = λ = 45 

Plastic Deformation for Polycrystalline Metals  ­due to random crystallographic orientations of numerous grains, direction of slip varies  from one grain to another  ­gross plastic deformation of a polycrystalline specimen corresponds to comparable  distortion of individual grains by means of slip  ­polycrystalline metals are stronger than their single crystal equivalents ­greater stresses required to initiate slip  ­even though a single grain may be favourably oriented with applied stress, cannot  deform until adjacent and less favourable oriented grains are capable of slip also  Deformation by Twinning  ­plastic deformation in some metallic materials can occur by formation of mechanical  twins  ­displacement magnitude within twin region is proportional to distance from twin plane  ­twinning occurs on a definite crystallographic plane and in specific direction dependent  on crystal structure  ­for slip: crystallographic orientation above and below the slip plane is same both before  and after deformation  ­occurs in distinct atomic spacing multiples  ­for twinning: reorientation across twin plane  ­atomic displacement less than interatomic separation  ­mechanical twinning occurs in metals that have BCC and HCP crystal structures at low  temperatures  ­twinning may place new slip systems in orientations that are favourable relative to stress  axis so that the slip process can now take place 

Grain Size Reduction  ­slip or dislocation motion takes place across common grain boundary  ­since two grains are of different orientations, dislocation passing from grain A to grain B  will have to change direction of motion  ­atomic disorder within a grain boundary will result in a discontinuity of slip planes from  one grain to another  ­for high angle grain boundaries, dislocations tend to back up at grain boundaries 

­these back ups introduce stress concentrators ahead of their slip planes and generate new  dislocations in adjacent grains  ­fine grained material is harder and stronger than one that is coarse grained  ­yield strength varies with grain size according to Hall Petch equation:  σ y =σ 0 +k y d −1 /2 where:  d – average grain diameter and σy and ky are both constants for particular material  ­grain size may be regulated by rate of solidification from liquid phase and by plastic  deformation followed by an appropriate heat treatment  ­grain size reduction improves not only strength but also toughness of many alloys  ­small angle grain boundaries are not effective in interfering with slip process ­twin boundaries will effectively block slip and increase strength of material  Solid Solution Strengthening  ­another technique is alloying with impurity atoms that go into either substitutional or  interstitial solid solution  ­high purity metals are almost always softer and weaker than alloys composed of same  base metal ­increasing the concentration of impurity results in an attendant increase in tensile and  yield strengths  ­alloys are stronger than pure metals because impurity atoms that go into solid solution  ordinarily impose lattice strains on the surrounding host atoms  ­lattice field interactions between dislocations and impurity atoms result in restricted  dislocation motion  ­example: impurity atom that is smaller than host atom for which it substitutes exerts  tensile strains on surrounding crystal lattice  ­conversely a larger substitutional atom imposes compressive strains in vicinity  ­solute atoms tend to diffuse to and segregate around dislocations in a away to reduce  overall strain energy  ­smaller impurity atom is located where tensile strain will partially nullify some of  dislocation’s compressive strain  ­resistance to slip is greater when impurity atoms are present because overall lattice strain  must increase if a dislocation is torn away from them  ­same lattice strain interactions will exist between impurity atoms and dislocations that  are in motion during plastic deformation  ­greater applied stress is necessary to first initiate and continue plastic deformation for  solid solution alloys  Strain Hardening  ­ductile metal becomes harder and stronger as it is plastically deformed  ­temperature at which deformation takes place is cold relative to absolute melting  temperature of metal (cold working)  ­most metals strain harden at room temperature  ­sometimes convenient to express degree of plastic deformation as percent cold work: 

%CW =

Ao −A d ×100 A0

where:  A0 is the original area and Ad is the area after deformation  ­ductility experiences reduction with increasing %CW ­strain hardening phenomenon is explained on basis of dislocation­dislocation strain field  interactions  ­dislocation density in a metal increases with deformation or cold work, due to  dislocation multiplication of formation of new dislocations  ­average distance of separation between dislocations decreases  ­on average, dislocation­dislocation strain interactions are repulsive  ­net result is that motion of dislocation is hindered by presence of other dislocations  ­as dislocation density increases, resistance to dislocation motion by other dislocations  becomes more pronounced  ­therefore, imposed stress necessary to deform metal increases with increasing CW  Crystalline Ceramics  ­hard and brittle materials due to difficulty of slip  ­for crystalline ceramic materials for which bonding is predominantly ionic, there are  very few slip systems along which dislocations may move  ­consequence of electrically charged nature of ions  ­ions of like charge are brought into close proximity to one another because of  electrostatic repulsion  ­ceramics where bonding is highly covalent, slip is also difficult and materials are brittle  because covalent bonds are strong, limited number of slip systems and dislocation  structures are complex  Noncrystalline Ceramics  ­does not occur by dislocation motion because there is no regular atomic structure  ­metals deform by viscous low, same manner in which liquids deform  ­rate of deformation is proportional to applied stress  ­in response to applied shear stress, atoms or ins slide past one another by breaking and  reforming of interatomic bonds  ­no prescribe manner or direction in which this occurs  ­viscosity is a measure of a noncrystalline material’s resistance to deformation  ­viscosity n is the ratio of applied shear stress and change in velocity dv with distance dy  in a direction perpendicular to and away from plates:  τ F/A n= = dv /dy dv /dy Deformation of Semicrystalline Polymers  Mechanism of Elastic Deformation  ­occurs at relative low stress levels on stress­strain curve ­onset of elastic deformation results from chain molecules in amorphous regions  elongating in direction of applied tensile stress 

­represented schematically for two adjacent chain folded lamellae  ­continued deformation in second stage occurs by changes in both amorphous and  lamellar crystalline regions  ­amorphous chains continue to align and become elongated  ­bending and stretching of the strong chain covalent bonds within lamellar crystallites  ­elastic modulus may be taken as combination of moduli of crystalline and amorphous  phases  

Mechanism of Plastic Deformation  ­transition from elastic to plastic deformation occurs when adjacent chains in lamellae  slide past one another  ­results in tilting of lamellae so chain folds become more aligned with tensile axis  ­any chain displacement is resisted by relatively weak secondary or Van der Waals bonds  ­crystalline block segments separate from lamellae  ­blocks and tie chains become oriented in direction of tensile axis  ­appreciable tensile deformation of semicrystalline polymers produces highly oriented  structure  ­process orientation is referred to as drawing  ­commonly used to improve mechanical properties of polymer fibers and films  ­spherulites experience shape changes for moderate levels of elongation  ­spherulite structure is virtually destroyed for large deformations  ­if deformation is terminated at some arbitrary stage, specimen is heated to an elevated  temperature near its melting point  ­material will recrystallize to again form a spherulitic structure  ­specimen will tend to shrink back  ­extent of shape and structural recovery will depend on annealing temperature and degree  of elongation 

Factors that Influence Mechanical Properties of Semicrystalline Polymers  Molecular Weight  ­for many polymers, tensile strength increases with increasing molecular weight  ­TS is a function of number average molecular weight according to:  A TS=TS∞ − ́ Mn ­TS ∞ is the tensile strength at infinite molecular weight and A is a constant  Degree of Crystallinity  ­affects extent of intermolecular secondary bonding  ­molecular chains are closely packed in an ordered and parallel arrangement  ­molecular chains are closely packed, extensive secondary bonding ordinarily exists  between adjacent chain segments  ­for semicrystalline polymers, tensile modulus increases significantly with degree of  crystallinity  ­increasing crystallinity makes polymer stronger and more brittle  Predeformation by Drawing 

­permanently deforming the polymer in tension  ­drawing is the polymer analog of strain hardening in metals  ­employed in production of fibers and films  ­molecular chains slip past one another and become highly oriented  ­properties of drawn polymers are highly anisotropic  ­tensile modulus and strength significantly greater in direction of deformation than in  other directions  ­for amorphous polymer, effects are only retained when material is quickly cooled  ­if material is held at temperature of drawing then it will have no effect on material  Heat Treating  ­can lead to increase in percent crystallinity and crystal size and perfection, as well as  modifications to spherulite structure  ­increasing the annealing temperature leads to the following:  ­increase in tensile modulus  ­increase in yield strength  ­reduction in ductility  ­opposite to effects in metallic materials  ­for polymers that have been drawn influence of annealing is opposite: modulus  decreases due to loss of chain orientation  Deformation of Elastomers  ­results from crosslinks in polymer that provide a force to restore chains to undeformed  conformations  ­small elastic modulus, vary with strain since stress­strain curve is nonlinear  ­unstressed state: elastomer will be amorphous and composed of crosslinked molecular  chains  ­elastic deformation, upon application of a tensile load is simply the partial uncoiling,  untwisting and straightening, resultant elongation of chains in stress direction  ­part of driving force for elastic deformation is entropy  ­as elastomer is stretched and chains straighten and become more aligned, system  becomes more ordered  ­entropy increases if chains return to original kinked and coiled contours  ­elastomers experiences a rise in temperature when stretched  ­modulus of elasticity increases with increasing temperature (opposite to behavior found  in other materials)  ­criteria for polymer to be elastomeric:  ­must not easily crystallize ­chain bond rotations must be relatively free for coiled chains to respond readily  to applied force  ­onset of plastic deformation must be delayed  ­restricting motions of chains past one another accomplishes this objective  ­crosslinks act as anchor points between chains and prevents chain slippage  ­elastomer must be above its glass transition temperature  Vulcanization 

­crosslinking process in elastomers  ­achieved by nonreversible chemical reaction  ­carried out at elevated temperatures  sulfur compounds are added to heated elastomer  ­sulfur atoms bond with adjacent polymer backbones chains and crosslink them 

­crosslink main chain sites are carbon atoms that were doubly bonded before  vulcanization but become singly bonded after vulcanization  ­unvulcanized rubber is soft and tacky and has poor resistance to abrasion  ­elastic modulus, tensile strength and resistance to degradation by oxidation are all  enhanced by vulcanization  ­magnitude of modulus of elasticity is directly proportional to density of crosslinks  ­useful rubbers result when about one crosslink forms for every 10­20 repeat units  ­since they are crosslinked, elastomeric materials are thermosetting in nature  Precipitation Hardening  ­strength and hardness of some metal alloys may be enhanced by formation f extremely  small uniformly dispersed particles of a second phase within original phase matrix  ­strength develops with time  ­two features must be displayed by phase diagrams for precipitation hardening:  appreciable maximum solubility of one component in the other and solubility limit that  rapidly decreases in concentration of major component with temperature reduction 

Solution Heat Treating  ­all solute atoms are dissolved to form a single phase solid solution  ­heating alloy to a temperature within the alpha phase field (T0) and waiting until all the  beta phase that may have been present is completely dissolved  ­at this point alloy consists only of an alpha phase of C0  ­followed by rapid cooling or quenching to temperature T1 to extent that any diffusion  and accompanying formation of B phase are prevented  ­nonequilibrium situation exists in which only alpha phase solid solution supersaturated  with B atoms is present at T1  ­in this state, alloy is relatively soft and weak 

­most alloys diffusion rates are extremely slow s.t. single alpha phase is retained at this  temperature 

Precipitation Heat Treating  ­supersaturated alpha solid solution is ordinarily heated to intermediate temperature T2  within a + B phase region  ­B precipitate phase begins to form as finely dispersed particles of composition Cb  (process sometimes called aging) –after appropriate aging time, alloy is cooled to room  temperature  ­character of B particles depend on both precipitation temperature and aging time  ­tensile strength, yield strength or hardness at room temperature as a function of  logarithm of aging time is shown below  ­with increasing time, strength or hardness increases, reaches a maximum and diminishes  ­reduction in strength and hardness that occurs after long time periods is overaging 

Mechanism of Hardening  ­properties are influenced by character of particles of transition phases  ­during initial hardening stage, copper atoms cluster together in very small, thin discs that  are only one or two atoms thick  ­form at countless positions within alpha phase  ­clusters, sometimes called zones, are so small they are really not regarded as distinct  precipitate particles  ­with time and subsequent diffusion, zones become particles as they increase in size ­pass through two transition phases before formation of equilibrium θ phase  ­maximum strength coincides with formation of θ’’ phase ­may be preserved upon cooling alloy to room temperature  ­strengthening process is accelerated as temperature is increased 

­lattice strains must be established at precipitate matrix interface  ­during plastic deformation, dislocation motions are effectively impeded as a result of  distortions, alloy becomes harder and stronger  ­as θ phase forms, resultant overaging is explained by reduction in resistance to slip  Miscellaneous Considerations  ­combined effects of strain hardening and precipitation hardening may be employed in  high­strength alloys  ­alloy is solution heat treated and then quenched  ­followed by cold working and finally by precipitation hardening heat treatment  ­in final treatment, little strength loss is sustained as result of recrystallization  ­if alloy is precipitation hardened before cold working, energy must be expended in its  deformation  ­cracking may result because of reduction in ductility that accompanies precipitation  hardening  ­precipitation hardened alloys are limited in maximum service temperatures 

Fracture & Fatigue Fundamentals of Fracture  ­simple fracture: separation of body into two or more pieces in response to imposed static  stress  ­temperature are low relative to melting temperature  ­two fracture modes are possible: ductile and brittle  ­process involves two steps: crack formation and propagation in response to imposed  stress  ­mode of fracture is highly dependent on mechanism of crack propagation  ­ductile fracture is characterized by extensive plastic deformation in vicinity of advancing  crack  ­proceeds relatively slowly as crack length is extended  ­ductile fracture is classified as stable, resists further extension unless there is an increase  in applied stress  ­evidence of appreciable gross deformation at fracture surfaces  ­brittle fracture is unstable  ­cracks spread extremely rapidly with little plastic deformation and increase in magnitude  of applied stress  ­ductile fracture is preformed because presence of plastic deformation gives warning that  fracture is imminent, allowing preventive measures  ­as well, more strain energy is required to induce ductile fracture 

Ductile Fracture  ­most common type of tensile fracture profile is only preceded by a moderate amount of  necking  ­after necking begins, small cavities or mirovoids form in interior of cross section  ­as microvoids enlarge, come together and coalesce to form an elliptical crack  ­crack continues to grow in a direction parallel to major axis by microvoid coalescence  process  ­fracture ensues by rapid propagation f a crack around outer perimeter of neck  ­sometimes called cup and cone fracture because one of the mating surfaces is in form of  a cup, and other of a cone 

Fractographic Studies  ­much more detailed information is attained using scanning electron microscope  ­when studied at high magnification, found to consist of numerous spherical dimples  ­characteristic of fracture resulting from uniaxial tensile failure  ­each dimple is one half of a microvoid that formed and separated during fracture process  Brittle Fracture  ­direction of crack motion is very nearly perpendicular to direction of applied tensile  stress and yields a relatively flat fracture surface  ­have their own distinctive patterns  ­ex: steel pieces, series of V­shaped chevron markings may form near center of fracture  cross section   ­other brittle fracture surfaces contain lines of ridges that radiate from origin of crack in  fanlike pattern  ­for very hard and fine grained metals, there will be no discernible fracture pattern  ­most brittle crystalline materials, crack propagation corresponds to successive and  repeated breaking of atomic bonds along specific crystallographic planes  ­process caked cleavage, fracture is said to be transgranular  ­fracture cracks pass through grains  ­may have grainy or faceted texture  ­intergranular: crack propagation is along grain boundaries  Principles of Fracture Mechanics  Stress Concentration   ­applied stress may be amplified or concentrated at tips of very small, microscopic flaws  or cracks ­magnitude depends on crack orientation and gemotry  ­magnitude of localized stress diminishes with distance away from crack tip  ­at positions far removed, stress is just nominal stress σ0, or applied load divided by  specimen cross sectional area 

­flaws are sometimes called stress raisers  ­assumed that a crack is similar to an elliptical hole through a plate  ­maximum stress occurs at crack tip and may be approximated by:  a 1 /2 σ m =2 σ 0 ( ) ρt where:  σ0 – magnitude of nominal applied stress  ρ – radius of curvature of crack tip  a – length of surface crack (half of length of internal crack)  Sometimes the ratio σm/σ0 is called the stress concentration factor Kt: σ a 1 /2 K t = m =2( ) σ0 ρt ­measure of degree to which external stress is amplified at tip of a crack  ­stress amplification is not restricted to microscopic defects  ­may occur at macroscopic internal discontinuities  ­effects of a stress raiser are more significant in brittle than ductile materials  ­for ductile material, plastic deformation ensues when maximum stress exceeds yield  strength  ­leads to more uniform distribution of stress in vicinity of stress raiser and to  development of a maximum stress concentration factor less than theoretical value  ­when magnitude of tensile stress at tip of flaws exceeds critical stress, crack forms and  then propagates, results in fracture  ­critical stress for crack propagation can be described as:  2 E γ s 1 /2 σ c =( ) πa where:  E – modulus of elasticity  γs – specific surface energy  a – half the length of internal crack  Fracture Toughness  ­measure of material’s resistance to brittle fracture when a crack is present  ­expression relates critical stress for crack propagation and crack length:  K c =Y σ c √ πa where:  Kc – fracture toughness  Y – parameter for planar specimens (usually 1)  ­for relatively thin specimens, value of Kc will depend on specimen thickness  ­for specimens where thickness is much greater than crack dimensions, Kc becomes  independent of thickness and under these conditions, plane strain exists  ­KIc is known as plane strain fracture toughness defined as:  K Ic =Yσ √ πa ­brittle materials have low KIc values 

­depends on many factors, most influential = temperature, strain rate and microstructure  ­magnitude of KIc diminishes with increasing strain rate and decreasing temperature  ­enhancement in yield strength wrought by solid solution or dispersion additions or by  strain hardening generally produces a corresponding decrease in KIc Design Using Fracture Mechanics  ­three variables (Kc or KIc, crack size a and imposed stress) must be considered  ­Kc and KIc are often dictated by factors such as density or corrosion characteristics of  environment  ­once any combination of the two parameters are prescribed, third becomes fixed  K Ic σC = Y √ πa Brittle Fracture of Ceramics  ­at room temperature, both crystalline and noncrystalline ceramics almost always fracture  before plastic deformation  ­stress raisers in brittle ceramics may be minute surfaces or interior cracks, internal pores  and grain corners  ­static fatigue/delayed fracture: slow propagation of cracks when stresses are static in  nature and  Y √ πa  is much less than KIc  ­sensitive to environmental conditions, when moisture is present in the atmosphere  ­stress­corrosion process probably occurs at crack tips  ­combination of applied tensile stress and atmospheric moisture at crack tips cause ionic  bonds to rupture  ­leads to sharpening and lengthening of cracks, ultimately one crack grows to a size  capable of rapid propagation  ­duration of stress application preceding fracture diminishes with increasing stress  ­usually considerable variation and scatter in fracture strength for many specimens of  specific brittle ceramic material  ­fracture strength depends on probability of existence of a flaw that is capable of  initiating a crack  ­probability depends on fabrication technique and any subsequent treatment  ­specimen size or volume also influences fracture strength: larger the specimen, greater  the probability of flaw existence, lower the fracture strength ­for compressive stresses, no stress amplification associated with any existing flaws  ­brittle ceramics display much higher strengths in compression than tension, generally  utilized when load conditions are compressive  ­fracture strength of a brittle ceramic may be enhanced dramatically by imposing residual  compressive stresses 

Fractography of Ceramics  ­failure analysis focuses on determination of location, type and source of crack initiating  flaw 

­fractographic study examines path of crack propagation and microscopic features of  crack surface  ­site of nucleation can be traced back to point where set of cracks converges  ­rate of crack acceleration increases with increasing stress level  ­mirror region: crack surface that formed during initial acceleration state of propagation  is flat and smooth ­upon reaching critical velocity, crack begins to branch  ­formation of two more surface features: mist and hackle  ­mist is a faint annular region outside mirror  ­hackle: rough texture, set of striations or lines that radiate away from crack source in  direction of crack propagation  ­mirror radius if function of acceleration rate of newly formed crack  ­acceleration increases with stress level, mirror radius decreases 

Fracture of Polymers  ­mode of fracture in thermosetting polymers is brittle  ­during fracture process, cracks form at regions where there is localized stress  concentration  ­stress is amplified at tips of cracks leading to crack propagation and fracture  ­thermoplastic polymers: both ductile and brittle modes are possible  ­factors that favour brittle fracture are reduction in temperature, increase in strain rate,  presence of sharp notch, increased specimen thickness and modification of polymer  structure that raises glass transition temperature  ­glassy thermoplastics are brittle below glass transition temperatures  ­as temperature is raised, they become ductile in vicinity of their glass transition  temperatures, experience plastic yielding prior to fracture  ­crazing often precedes fracture in thermoplastic polymers  regions of very localized plastic deformation lead to formation of small and  interconnected microvoids  ­if applied tensile load is sufficient, bridges elongate and break, causing microvoids to  grow and coalesce  ­as microvoids coalesce, cracks begin to form  ­craze can support a load across its face  ­process of craze growth absorbs fracture energy and effectively increases fracture  toughness of polymer  ­in glassy polymers, cracks propagate with little craze formation, resulting in low fracture  toughness

­propagate perpendicular to applied tensile stress  Fatigue ­form of failure that occurs in structures subjected to dynamic and fluctuating stresses  ­possible for failure to occur at a stress level considerably lower than tensile or yield  strength for a static load  ­occurs after a lengthy period of repeated stresses r strain cycling  ­largest cause of failure in metals  Cyclic Stresses  ­applied stress may be axial, flexural or torsional  ­three different fluctuating stress time modes are possible  ­sinusoidal time dependence: reversed stress cycle (a)  ­repeated stress cycle (b)  ­stress amplitude alternates about a mean stress:  σ +σ σ m = max min 2 ­range of stress:  σ r =σ max−σ min ­stress amplitude:  σ σa= r 2 ­stress ratio:  σ min R= σ max S­N Curve  ­schematic diagram of rotating bending test is shown below  ­compression and tensile stresses are imposed on specimen as it is simultaneously bent  and rotated  ­frequently conducted using an alternating uniaxial tension­compression stress cycle  ­subjecting a specimen to stress cycling at relatively large maximum stress amplitude (on  order of 2/3 of static tensile strength; number of cycles to failure is counted)  ­procedure is repeated on other specimens at progressively decreasing maximum stress  amplitudes  ­data plotted as stress S vs. logarithm of number N of cycles to failure  ­higher the magnitude of stress, smaller the number of cycles the material is capable of  sustaining before failure  ­for some ferrous materials, there is a limiting stress level called the fatigue limit ­represents largest value of fluctuating stress that will not cause failure for an infinite  number of cycles  ­fatigue limits range between 35% and 60% of tensile strength  ­most nonferrous alloys do not have a fatigue limit  ­downward trend at increasing greater N values  ­fatigue will ultimately occur regardless of magnitude of stress

one fatigue response is specified as fatigue strength: stress level at which failure will  occur for some specified number of cycles 

­another important parameter is fatigue life  ­number of cycles to cause failure at specified stress level, taken from S­N plot  ­variation in measured N value for a number of specimens tested at the same stress level  ­scatter in results is a consequence of fatigue sensitivity to a number of test and material  parameters that are impossible to control precisely  ­parameters include specimen fabrication and surface preparation, metallurgical  variables, specimen alignment in apparatus, mean stress and test frequency  ­some materials have relatively high loads that produce not only elastic strain but also  plastic strain  ­low cycle fatigue: fatigue lives are relatively short ­high cycle fatigue: for lower stress levels, deformations are total elastic  ­larger numbers of cycles are required to produce fatigue failure  Fatigue in Polymeric Materials  ­polymers may experience fatigue failure under conditions of cyclic loading  ­occurs at stress levels low relative to yield strength  ­fatigue strengths and limits for polymers are much lower than metals  ­much more sensitive to loading frequencies  ­cycling polymers at high frequencies and/or relatively large stresses can cause localized  heating  ­therefore failure may be due to softening of material rather than typical fatigue processes  Crack Initiation and Propagation ­region of a fracture surface that formed during crack propagation may be characterized  by either beachmarks or striations  ­both of these features indicate position of crack tip at some point in time and appear as  concentric ridges that expand away from crack intiation sites, frequently in a circular or  semicircular pattern  ­beachmarks are of macroscopic dimensions and may be observed with unaided eye  ­found for components that experience interruptions during crack propagation stage ­each beachmark band represents a period of time over which crack growth occurred  ­fatigue striations are microscopic in size and subject to observation with eletron  microscope  ­each striation is thought to represent advance distance of a crack front during a single  load cycle  ­striation width depends on and increases with increasing stress range  ­presence of beachmarks and/or striations confirms cause of failure was fatigue 

­however absence does not rule out fatigue as cause of value (do not appear on region for  rapid failure)  Factors that Affect Fatigue Life  Mean Stress  ­dependence of fatigue life on stress amplitude is presented on series of S­N plots ­increasing mean stress leads to decrease in fatigue life  Surface Effects  ­maximum stress occurs at surface, most cracks originate at surface at stress  amplification sites  ­fatigue depends on condition and configuration of surface  Design Factors  ­any notch or geometrical discontinuity can act as a stress raiser and fatigue crack  initiation site  ­these design features include grooves, holes, keyways, threads and etc  ­sharper the discontinuity, more severe the stress concentration  ­probability of fatigue failure may be reduced by avoiding structural irregularities or  making design modifications with sudden contour changes leading to sharp corners  Surface Treatments  ­improving the surface finish by polishing will affect fatigue life significantly  ­one of most effective methods is by imposing residual compressive stresses within a thin  outer surface layer  ­surface tensile stress or external origin will be partially nullified and reduced in  magnitude by residual compressive stress  ­likelihood of crack formation and fatigue failure is reduced  ­residual compressive stresses are commonly introduced into ductile metals mechanillay  by localized plastic deformation within outer surface region  ­accomplished by a process called sht peening  ­small hard particles having diameters from 0.1­1.0 mm are projected at high velocities  onto surface  ­resulting deformation induces compressive stresses to a depth of between one quarter  and one half of shot diameter  ­case hardening is a technique where both surface hardness and fatigue life are enhanced  for steel alloys  ­accomplisehd by carburizing or nitriding process  ­component is exposed to carbonaceous or nitrogeneous atmosphere at elevated  temperature  ­a carbon or nitrogen rich outer surface layer is introduced by atomic diffusion from  gaseous phase  ­normally on order of 1mm deep and harder than inner core of material  Environmental Effects 

­thermal fatigue: normally induced at elevated temperatures by fluctuating thermal  stresses ­origin of these stresses is restraint to dimensional expansion or contraction that would  normally occur in a structural member with variations in temperature  ­magnitude of thermal stress developed by temperature change is dependent on  coefficient of thermal expansion and elastic modulus  σ =α 1 E ∆ T ­thermal stress will not arise if mechanical restraint is absent ­therefore to prevent this type of fatigue, eliminate restraint source  ­corrosion fatigue: failure that occurs by simultaneous action of cyclic stress and  chemical attack  ­corrosive environments produce shorter fatigue lives  ­small pits may form as a result of chemical reactions between environment and material,  which serve as points of stress concentration  ­crack propagation rate is enhanced as a result of environment  ­nature of stress cycles will influence fatigue behavior :lowering load application  frequency leads to longer periods during which opened crack is in contact with  environment  ­ways to prevent corrosion fatigue: apply protective surface coatings, selection more  corrosion resistant material, reduce corrosiveness of environment  ­reduce applied tensile stress and impose residual compressive stresses on surface