multi-axis aln-on-silicon vibration energy harvester with integrated ...

Report 24 Downloads 31 Views
MULTI-­AXIS  ALN-­ON-­SILICON  VIBRATION  ENERGY  HARVESTER   WITH  INTEGRATED  FREQUENCY-­UPCONVERTING  TRANSDUCERS   J.  L.  Fu1,  Y.  Nakano2,  L.  D.  Sorenson1,  and  F.  Ayazi1   1 Georgia  Institute  of  Technology,  Atlanta,  Georgia,  USA   2 Tohoku  University,  Sendai,  Japan    

  ABSTRACT  

 

This   paper   presents   fully-­integrated   multi-­axis   piezoelectric-­on-­silicon   kinetic   energy  harvesters  (KEHs)   that   demonstrate   enhanced   power   output   via   mechanical   frequency   upconversion.   Mechanical   energy   is   converted   to   electrical   energy   by   out-­of-­plane   and   in-­plane   devices   that  are  micromachined  on  the  same  substrate.  The  out-­of-­ plane   device   demonstrates   nearly   100u   frequency   upconversion   of   134   Hz   input   vibrations,   while   the   in-­ plane  harvester  demonstrates  more  than  3000u  frequency   upconversion   of   2   Hz   input   vibrations.   The   batch-­ fabrication  process  is  compatible  with  AlN-­on-­Si  devices   such  as  RF  resonators  and  sensors.  The  total  volume  of  an   individual  harvester  is  5  mm3  (in-­plane)  and  1  mm3  (out-­ of-­plane),   implying   that   stacked   arrays   of   such   devices   can  easily  increase  power  density.      

INTRODUCTION   Readily-­available   low-­frequency   mechanical   energy,   such  as  human   walking  at  1-­2  Hz   [1]  and   other   common   vibration   sources   up   to   150   Hz   [2],   can   be   transformed   into  useful  power  for  portable  and  wireless  microsystems.   However,   it   is   challenging   to   implement   miniaturized   energy   harvesters   at   such   low   frequencies.   Piezoelectric   cantilever  harvesters  generate  sufficient  power  to  operate   wireless   temperature   sensors   [3];;   however,   maximum   power   is   achieved   at   the   device   resonance   frequency   in   100s   of   Hz   or   greater,   meaning   that   lower-­frequency   vibrations  cannot  be  converted  with  the  same  efficiency.   Although   environmental   vibrations   occur   across   multiple   degrees   of   freedom   (multi-­DOF),   most   energy   harvesters   operate   as   a   single-­DOF   mass-­spring   system   [4].   To   completely   capture   mechanical   energy   produced   by  such  systems,  devices  must  be  duplicated  and  oriented   along   different   axes,   which   further   increases   system   size   and  complicates  integration.   As   the   resonance   frequency   of   electromechanical   transducers  increases,  higher  power  levels  can  be  captured   for  constant  input  vibration  amplitudes   [4].  However,  the   amount   of   useful   ambient   energy   decreases   with   frequency.   For   this   reason,   mechanical   frequency   upconversion   has   been   explored   to   combine   low-­ frequency   ambient   energy   scavenging   with   resonant   MEMS   devices.   Recently   reported   harvesters   utilize   an   inertial  mass  to  collect  environmental  energy  and  actuate   high-­frequency   transducers   to   increase   the   power   output   [5,  6].  However,  the  overall  volume,  including  magnets,  is   in  hundreds  of  mm3  or  larger.     To   address   these   challenges,   we   introduce   a   multi-­ axis   kinetic  energy   harvesting  (KEH)  platform  composed   of   micromachined   AlN-­on-­Si   devices   (Fig.   1).   In-­plane   and   out-­of-­plane   vibrations   from   2   Hz   to   134   Hz   are   successfully   harvested   and   upconverted   without   post-­ process  assembly  or  large  external  transducers.    

978-1-4673-0325-5/12/$31.00 ©2012 IEEE

    Figure  1:  Backside  view  of  a  silicon  die  with  in-­plane  and   out-­of-­plane  kinetic  energy  harvesters  fabricated  side-­by-­ side.     PRINCIPLE  OF  OPERATION   KEHs   should   provide   power   regardless   of   device   orientation   with   respect   to   the   vibration   source.   A   multi-­ axis   device   can   eliminate   the   need   to   manually   align   the   harvester   for   maximum   power.   To   achieve   multi-­axis   energy   harvesting,   both   out-­of-­plane   and   in-­plane   harvesters  are  realized  on  the  same  die.     Out-­of-­Plane  Energy  Harvester   The  out-­of-­plane  harvester  comprises  a  seismic  mass   tethered   to   the   substrate   with   integrated   AlN-­on-­Si   beam   transducers.   The   mass   captures   low-­frequency   ambient   vibrations   in   an   out-­of-­plane   translational   mode   (Fig.   2,   top).  Additionally,  motion  of  the  mass  couples  energy  into   the   transducer   high-­frequency   fundamental   clamped-­ clamped   beam   mode   (Fig.   2,   bottom).   To   sense   a   high-­ strain   region   of   the   beam   deflection,   where   the   most   charge   is   generated   by   the   piezoelectric   effect,   the   transducer   electrodes   and   AlN   cover   the   area   near   the   substrate  anchor  point.    

    Figure   2:   Out-­of-­plane   harvester   mode   shapes   (fmass   =   149   Hz   and   fbeam   =   13.7   kHz)   and   proposed   method   of   operation.  

1269

MEMS 2012, Paris, FRANCE, 29 January - 2 February 2012

In-­Plane  Energy  Harvester   The   in-­plane   harvester   consists   of   a   seismic   mass   with   free-­standing   cantilever   micro-­SLFNV ȝ-­picks)   located   in   the   center   of   the   mass   (Fig.   3a).   The   mass   exhibits  translational  motion  in  response  to  low-­frequency   vibrations  (Fig.  3b).  When  external  acceleration  generates   sufficient   force,   HDFK ȝ-­pick   can   ³VQDS´ DQ $O1-­on-­Si   spring   transducer   that   subsequently   vibrates   at   higher   frequencies   (Fig.   3c).   The   transducer   top   electrode   connects   regions   of   identical   strain   polarity   to   collect   charge  (Fig.  3d).    

FABRICATION  PROCESS  FLOW   Devices  are  fabricated  on  DȝP62,VXEVWUDWH  (Figs.   4,   5,   6)   using   the   AlN-­on-­Si   process   [7]   with   two   modifications.   First,   the   backside   oxide   mask   is   selectively   etched   to   control   seismic   mass   thickness,   which  enables  any   number  of  devices  on  the   same   wafer   to   be   customized   for   a   particular   operating   frequency.   Secondly,   HF  release   forms  z-­shock  stops  that   ensure  in-­ plane  harvester  ȝ-­pick  alignment.    

      Figure  4:  Cross-­section  view  of  energy  harvester  on  SOI   substrate  with  Mo/AlN/Mo.    

 

(a)    

  (b)    

  (c)  

 

 

    Figure  5:  SEM  images  of  out-­of-­plane  harvester.  AlN  and   top   Mo   are   patterned   to   sense   the   fundamental   beam   mode,  exposing  bottom  Mo  in  the  beam  center.    

 

+ ++ ++++ _ _ _ _ _ _ _ _ _ _ _+ _+_+ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ +++ _ _ __ +++++ + + ++++ + + +_+__ _ _ _ _ _ _ _ _ _ _ _ _ __ +_ _+ + _ + _ + + _ _+ _+ _+ _+ _+ _+ +_ _+ +_ +_ +_ _+ + +_+_ _ _ _ _ +_ + + _ + + +++ + + + + ++++   _ _ _ _ +_ _ _ _ +_+_+ +

+ _ _ +

Relative  strain Relative   strain max   (d)   max   Figure   3:   Conceptual  diagram   of   in-­plane   harvester:   (a)   rest   position,   (b)   low-­frequency   seismic   mass   vibration,   (c)  high-­frequency  spring  transducer  vibration,  (d)  spring   transducer   strain   patterns   with   charge   formation   for   in-­ plane  modes  at  2.23  kHz  (upper)  and  6.24  kHz  (lower).   min

min

    Figure  6:  (upper  left)  SEM  image  of  in-­plane  harvester  ȝ-­ picks   and   spring   transducer;;   (lower   left)   z-­shock   stop   removed  to  show  handle  Si;;  (right)  backside  optical  view.  

1270

EXPERIMENTAL  RESULTS   Fabricated   devices   are   mounted   on   a   stage   that   provides   sinusoidal   out-­of-­plane   or   in-­plane   acceleration   ain  with  frequency   fin.  The   harvester  output  current  is  fed   through  a  load  resistance  RL  to  a  transimpedance  amplifier   (TIA).   The   TIA   output   voltage,   which   is   proportional   to   the  converted  current,  is  measured  by  an  oscilloscope.   The   out-­of-­plane   harvester,   with   four   beam   transducer   outputs   connected   in   parallel,   is   first   characterized   over   various   accelerations   at   an   input   frequency   close   to   the   seismic   mass   resonance.   A   sinusoidal  output  signal  fout  =  fin  =  126  Hz  is  generated  by   the  harvester,  while  increasing  ain  produces  large  transient   current  spikes  occurring  with  frequency  fspike  in  addition  to   the   sinusoidal   signal.   When   ain   is   increased   to   0.7g,   fspike   also  becomes  equal  to  fin  (Fig.  7).      

 

 

    Figure  7:  Out-­of-­plane  beam  transducer  output  at  various   accelerations.        

The  output  current  impulses  are  found  to  have  a  main   spectral   component   at   fring   12   kHz   (Fig.   8),   which   corresponds   to   the   fundamental   beam   mode.   A   peak   power   of   3.23   nW   is   measured   in   response   to   a   134-­Hz,   0.6g  acceleration  input.  

    Figure   8:   Out-­of-­plane   beam   transducer   output   with   periodic   upconversion   spikes;;   (inset)   close-­up   view   of   signal  ring-­down  with  12kHz  spectral  component.     A  single  spring  transducer  of  the  in-­plane  harvester  is   connected   to   the   TIA,   and   similar   acceleration   characterization   is   performed   at   lower   frequencies   (Fig.   9).   Based   on   preliminary   measurements,   a   minimum   acceleration   of   0.45g   is   required   to   induce   periodic   actuations   of   the   spring   transducer   with   an   fspike   equal   to   fin.   Missed   actuations   may   result   from   imperfect   ȝ-­pick   alignment  due  to  slight  tilting  of  the  sample.   For  ain  =  0.45g  and  fin  =  2  Hz,  complete  actuations  of   one   in-­plane   spring   transducer   occur   with   fspike   =   fin.   A   single  upconversion  spike  produces  a  peak  power  of  2.27   nW   (Fig.   10).   Spectral   analysis   confirms   signal   components   at   fring   =   2   kHz   and   7   kHz   contained   in   the   upconversion   spikes,   which   are   in   close   agreement   with   simulated  spring  modes.       While   testing   limitations   prevented   simultaneous   measurement   of   both   spring   transducers,   the   total   output   current  should  nearly  double  as  a  result  of  the  transducer   symmetry   [6].   The   cantilever   transducers   on   the   seismic   mass,  which  are  also  covered  with  piezoelectric  material,       can  be  measured  in  conjunction  with  the  spring  transducer   output.   Power   calculations   were   based   on   measured   current   and   RL.   While   RL   =   560   :   was   used   for   in-­plane   acceleration  characterization   (Fig.   9),   measurements   with   RL  values  up  to  560  k:  (Fig.  10)  confirm  that  the  output   power  can  be  maximized  by  selecting   RL  to  approach  the   source  impedance  of  the  harvester.        

1271

 

  Figure   10:   In-­plane   spring   transducer   output   with   upconversion  spikes  (RL  =  560  k:);;  (inset)  close-­up  view   of  7  kHz  signal  ring-­down.      

 

ACKNOWLEDGMENTS   This   project   was   sponsored   in   part   by   the   Semiconductor   Research   Corporation   through   the   Interconnect   Focus   Center,   the   National   Nanotechnology   Infrastructure   Network   (NNIN,   USA),   and   the   National   Institute   for   Materials   Science   (NIMS,   Japan).   The   authors   also   thank   the   Georgia   Tech   Nanoelectronic   Research  Center  cleanroom  staff  for  fabrication  support.  

REFERENCES  

    Figure   9:   In-­plane   spring   transducer   output   at   various   accelerations  (RL  =  560  :).       CONCLUSION   This   work   introduced   micromachined   multi-­axis   AlN-­on-­Si  KEHs  as  a  solution  to  scavenge  low-­frequency   mechanical   energy   from   the   environment.   Both   out-­of-­ plane   and   in-­plane   devices   utilized   integrated   frequency   upconversion  transducers  that  increased  the  power  output   beyond   the   already-­harvested   energy   at   the   tested   input   frequencies.     The   fabrication   process   accommodates   for   multiple   degrees-­of-­freedom  by  incorporating  out-­of-­plane  and  in-­ plane   harvesters   on   the   same   substrate.   Additionally,   the   fabrication   process   allows   for   multiple   operating   frequencies   (and   increased   power   output)   by   controlling   the  oxide  mask  thickness  that  determines  the  seismic  mass   thickness.  

[1]   D.   E.   Newland,   "Pedestrian   excitation   of   bridges²recent   results,"  in  Tenth  Int.  Congr.  Sound  Vib.,  2003,  pp.  1±15.   [2]   S.   Roundy,   "On   the   Effectiveness   of   Vibration-­based   Energy   Harvesting,"   Journal   of   Intelligent   Material   Systems  and  Structures,  vol.  16,  p.  809,  2005.   [3]   R.   Elfrink,   et   al.,   "First   autonomous   wireless   sensor   node   powered   by   a   vacuum-­packaged   piezoelectric   MEMS   energy  harvester,"  in  IEDM  2009,  2009,  pp.  1-­4.   [4]   C.  B.  Williams,  et  al.,  "Development  of  an  electromagnetic   micro-­generator,"   Circuits,   Devices   and   Systems,   IEEE   Proceedings,  vol.  148,  pp.  337-­342,  2001.   [5]   T.   Galchev,   et   al.,   "Non-­resonant   bi-­stable   frequency-­ increased   power   scavenger   from   low-­frequency   ambient   vibration,"  in  Transducers  2009,  2009,  pp.  632-­635.   [6]   I.  Sari,  et  al.,  "An  Electromagnetic  Micro  Power  Generator   for  Low-­Frequency  Environmental  Vibrations  Based  on  the   Frequency  Upconversion  Technique,"  J.  Microelectromech.   Sys.,  vol.  19,  pp.  14-­27,  2010.   [7]   W.   Pan,   et   al.,   "Thin-­film   piezoelectric-­on-­substrate   resonators   with   Q   enhancement   and   TCF   reduction,"   in   MEMS  2010,  2010,  pp.  727-­730.    

 

CONTACT   *J.  L.  Fu,  tel:  +1-­404-­385-­6693;;  [email protected].  

1272