O'Nan Moonshine

Report 1 Downloads 98 Views
O'Nan Moonshine

Michael H. Mertens (joint work with J. Duncan and K. Ono)

Universität zu Köln 06 September, 2017 Simons Foundation, New York

M. H. Mertens

(U. Köln)

O'Nan Moonshine

1 / 48

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

5

Traces of singular moduli

Arithmetic applications M. H. Mertens

(U. Köln)

O'Nan Moonshine

2 / 48

Table of Contents

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

Traces of singular moduli

5

Arithmetic applications

M. H. Mertens

(U. Köln)

O'Nan Moonshine

2 / 48

Table of Contents

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

Traces of singular moduli

5

Arithmetic applications

M. H. Mertens

(U. Köln)

O'Nan Moonshine

3 / 48

Classication of nite simple groups

Theorem A nite simple group of

26

G

either belongs to one of

8

innite families or is one

sporadic simple groups,

Source: wikipedia

M. H. Mertens

(U. Köln)

O'Nan Moonshine

4 / 48

The Monster group

M

Some properties of the Monster The largest of the 26 sporadic nite simple groups

M. H. Mertens

(U. Köln)

O'Nan Moonshine

5 / 48

The Monster group

M

Some properties of the Monster The largest of the 26 sporadic nite simple groups

#M = 246 ·320 ·59 ·76 ·112 ·133 ·17·19·23·29·31·41·47·59·71 ≈ 8.08·1053

M. H. Mertens

(U. Köln)

O'Nan Moonshine

5 / 48

The Monster group

M

Some properties of the Monster The largest of the 26 sporadic nite simple groups

#M = 246 ·320 ·59 ·76 ·112 ·133 ·17·19·23·29·31·41·47·59·71 ≈ 8.08·1053 194 conjugacy classes, hence 194 irreducible representations (over with characters

M. H. Mertens

(U. Köln)

C)

χ1 , ..., χ194

O'Nan Moonshine

5 / 48

Modular forms and functions

Reminder:

SL2 (R)

M. H. Mertens

(U. Köln)

H via    aτ + b a b , τ 7→ . c d cτ + d

acts on the upper half-plane

O'Nan Moonshine

6 / 48

Modular forms and functions

Reminder:

SL2 (R)

acts on the upper half-plane

H

via

   aτ + b a b , τ 7→ . c d cτ + d Denition Let

Γ ≤ SL2 (R)

vol(Γ \ H) < ∞. modular function for Γ

be a discrete subgroup such that

meromorphic function

b f :H→C

is called a

A if

f (γτ ) = f (τ ) for all

γ ∈ Γ, τ ∈ H

M. H. Mertens

(U. Köln)

(+growth condition at the boundary).

O'Nan Moonshine

6 / 48

Modular forms and functions Reminder:

SL2 (R)

acts on the upper half-plane

H

via

   aτ + b a b , τ 7→ . c d cτ + d Denition Let

Γ ≤ SL2 (R)

be a discrete subgroup such that

b holomorphic function f : H → C form of weight k for Γ if

vol(Γ \ H) < ∞.

A

is called a (weakly holomorphic) modular

f (γτ ) = (cτ + d)k f (τ ) for all

γ= k 2

Im(τ ) f (τ ) M. H. Mertens

a b c d



∈ Γ, τ ∈ H

is bounded on

(U. Köln)

(+growth condition at the boundary). If

H,

we call

f

a cusp form.

O'Nan Moonshine

6 / 48

Hauptmoduln

Facts 1

The quotient of genus

g.

Γ\H

can be compactied to a Riemann surface

Modular functions for

Γ

X(Γ)

dene meromorphic functions on

X(Γ).

M. H. Mertens

(U. Köln)

O'Nan Moonshine

7 / 48

Hauptmoduln

Facts 1

The quotient of genus

g.

Γ\H

can be compactied to a Riemann surface

Modular functions for

Γ

X(Γ)

dene meromorphic functions on

X(Γ). 2

X(Γ) is isomorphic to an g . In particular if g = 0, it

The eld of meromorphic functions on algebraic extension of isomorphic to

M. H. Mertens

C(x)

of degree

is

C(x).

(U. Köln)

O'Nan Moonshine

7 / 48

Hauptmoduln

Facts 1

The quotient of genus

g.

Γ\H

can be compactied to a Riemann surface

Modular functions for

Γ

X(Γ)

dene meromorphic functions on

X(Γ). 2

X(Γ) is isomorphic to an g . In particular if g = 0, it

The eld of meromorphic functions on algebraic extension of isomorphic to

C(x)

of degree

is

C(x).

Denition Let

Γ

be as above such that

X(Γ)

has genus

0

(+ mild extra conditions).

A suitably normalized generator for the eld of modular functions for called the Hauptmodul for

M. H. Mertens

(U. Köln)

Γ

is

Γ.

O'Nan Moonshine

7 / 48

Table of Contents

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

Traces of singular moduli

5

Arithmetic applications

M. H. Mertens

(U. Köln)

O'Nan Moonshine

8 / 48

The Jack Daniels problem

For

N ∈N

let

 Γ0 (N ) :=

 γ ∈ SL2 (Z) : γ ≡

 ∗ ∗ 0 ∗

 (mod N )

and

Γ0 (p)+ := NSL2 (R) (Γ0 (p))

M. H. Mertens

(U. Köln)

O'Nan Moonshine

(p

prime).

9 / 48

The Jack Daniels problem

For

N ∈N

let

 Γ0 (N ) :=

 γ ∈ SL2 (Z) : γ ≡

 ∗ ∗ 0 ∗

 (mod N )

and

Γ0 (p)+ := NSL2 (R) (Γ0 (p))

(p

prime).

Theorem (A. Ogg)

p prime, the Riemann surface X(Γ0 (p)+ ) has genus p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}. For

M. H. Mertens

(U. Köln)

O'Nan Moonshine

zero if and only if

9 / 48

The Jack Daniels problem

For

N ∈N

let

 Γ0 (N ) :=

 γ ∈ SL2 (Z) : γ ≡

 ∗ ∗ 0 ∗

 (mod N )

and

Γ0 (p)+ := NSL2 (R) (Γ0 (p))

(p

prime).

Theorem (A. Ogg) For

p

p

prime, the Riemann surface

divides

X(Γ0 (p)+ )

has genus zero if and only if

#M.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

9 / 48

The Jack Daniels problem

For

N ∈N

let

 Γ0 (N ) :=

 γ ∈ SL2 (Z) : γ ≡

 ∗ ∗ 0 ∗

 (mod N )

and

Γ0 (p)+ := NSL2 (R) (Γ0 (p))

(p

prime).

Theorem (A. Ogg) For

p

p

prime, the Riemann surface

divides

X(Γ0 (p)+ )

has genus zero if and only if

#M.

Question: Why is this so?

M. H. Mertens

(U. Köln)

O'Nan Moonshine

9 / 48

Monstrous Moonshine I Dimensions of irreducible representations:

χ1 (1) = 1,

M. H. Mertens

χ2 (1) = 196 883,

(U. Köln)

χ3 (1) = 21 296 876,

O'Nan Moonshine

χ4 (1) = 842 609 326.

10 / 48

Monstrous Moonshine I Dimensions of irreducible representations:

χ1 (1) = 1,

χ2 (1) = 196 883,

Hauptmodul for

SL2 (Z)

J(τ ) = j(τ ) − 744 = =

∞ X

(q

χ3 (1) = 21 296 876,

χ4 (1) = 842 609 326.

:= e2πiτ ):

E4 (τ )3 − 744 ∆(τ )

jn q n = q −1 + 196 884q + 21 493 760q 2 + 864 299 970q 3 + O(q 4 ).

n=−1

M. H. Mertens

(U. Köln)

O'Nan Moonshine

10 / 48

Monstrous Moonshine I Dimensions of irreducible representations:

χ1 (1) = 1,

χ2 (1) = 196883,

Hauptmodul for

SL2 (Z)

J(τ ) = j(τ ) − 744 = =

∞ X

(q

χ3 (1) = 21 296 876,

χ4 (1) = 842 609 326.

:= e2πiτ ):

E4 (τ )3 − 744 ∆(τ )

jn q n = q −1 + 196 884q + 21 493 760q 2 + 864 299 970q 3 + O(q 4 ).

n=−1 Observation (J. McKay & J. G. Thompson, 1979)

j1 = χ1 (1) + χ2 (1). M. H. Mertens

(U. Köln)

O'Nan Moonshine

10 / 48

Monstrous Moonshine I Dimensions of irreducible representations:

χ1 (1) = 1,

χ2 (1) = 196883,

Hauptmodul for

SL2 (Z)

J(τ ) = j(τ ) − 744 = =

∞ X

(q

χ3 (1) = 21 296 876,

χ4 (1) = 842 609 326.

:= e2πiτ ):

E4 (τ )3 − 744 ∆(τ )

jn q n = q −1 + 196 884q + 21 493 760q 2 + 864 299 970q 3 + O(q 4 ).

n=−1 Observation (J. McKay & J. G. Thompson, 1979)

j2 = χ1 (1) + χ2 (1) + χ3 (1) M. H. Mertens

(U. Köln)

O'Nan Moonshine

10 / 48

Monstrous Moonshine I Dimensions of irreducible representations:

χ1 (1) = 1,

χ2 (1) = 196883,

Hauptmodul for

SL2 (Z)

J(τ ) = j(τ ) − 744 = =

∞ X

(q

χ3 (1) = 21 296 876,

χ4 (1) = 842 609 326.

:= e2πiτ ):

E4 (τ )3 − 744 ∆(τ )

jn q n = q −1 + 196 884q + 21 493 760q 2 + 864 299 970q 3 + O(q 4 ).

n=−1

Observation (J. McKay & J. G. Thompson, 1979)

j3 = 2χ1 (1) + 2χ2 (1) + χ3 (1) + χ4 (1) M. H. Mertens

(U. Köln)

O'Nan Moonshine

10 / 48

Monstrous Moonshine II

Values of irreducible characters at other conjugacy classes.

χ1 (2A) = 1,

M. H. Mertens

χ2 (2A) = 4 371,

(U. Köln)

χ3 (2A) = 91 884,

O'Nan Moonshine

χ4 (2A) = 1 139 374.

11 / 48

Monstrous Moonshine II

Values of irreducible characters at other conjugacy classes.

χ1 (2A) = 1,

χ2 (2A) = 4 371,

Hauptmodul for

J2+ (τ ) = =

∞ X

χ3 (2A) = 91 884,

χ4 (2A) = 1 139 374.

Γ0 (2)+ : 24 η(τ )24 12 η(2τ ) + 2 + 24 η(2τ )24 η(τ )24

αn q n = q −1 + 4 372q + 96 256q 2 + 1 240 002q 3 + O(q 4 ).

n=−1

M. H. Mertens

(U. Köln)

O'Nan Moonshine

11 / 48

Monstrous Moonshine II Values of irreducible characters at other conjugacy classes.

χ1 (2A) = 1,

χ2 (2A) = 4 371,

Hauptmodul for

J2+ (τ ) = =

∞ X

χ3 (2A) = 91 884,

χ4 (2A) = 1 139 374.

Γ0 (2)+ : 24 η(τ )24 12 η(2τ ) + 2 + 24 η(2τ )24 η(τ )24

αn q n = q −1 + 4 372q + 96 256q 2 + 1 240 002q 3 + O(q 4 ).

n=−1

Observation (J. H. Conway & S. P. Norton, 1979)

α1 = χ1 (2A) + χ2 (2A).

M. H. Mertens

(U. Köln)

O'Nan Moonshine

11 / 48

Monstrous Moonshine II Values of irreducible characters at other conjugacy classes.

χ1 (2A) = 1,

χ2 (2A) = 4 371,

Hauptmodul for

J2+ (τ ) = =

∞ X

χ3 (2A) = 91 884,

χ4 (2A) = 1 139 374.

Γ0 (2)+ : 24 η(τ )24 12 η(2τ ) + 2 + 24 η(2τ )24 η(τ )24

αn q n = q −1 + 4 372q + 96 256q 2 + 1 240 002q 3 + O(q 4 ).

n=−1

Observation (J. H. Conway & S. P. Norton, 1979)

α2 = χ1 (2A) + χ2 (2A) + χ3 (2A)

M. H. Mertens

(U. Köln)

O'Nan Moonshine

11 / 48

Monstrous Moonshine II Values of irreducible characters at other conjugacy classes.

χ1 (2A) = 1,

χ2 (2A) = 4 371,

Hauptmodul for

J2+ (τ ) = =

∞ X

χ3 (2A) = 91 884,

χ4 (2A) = 1 139 374.

Γ0 (2)+ : 24 η(τ )24 12 η(2τ ) + 2 + 24 η(2τ )24 η(τ )24

αn q n = q −1 + 4 372q + 96 256q 2 + 1 240 002q 3 + O(q 4 ).

n=−1

Observation (J. H. Conway & S. P. Norton, 1979)

α3 = 2χ1 (2A) + 2χ2 (2A) + χ3 (2A) + χ4 (2A) M. H. Mertens

(U. Köln)

O'Nan Moonshine

11 / 48

Monstrous Moonshine II

Observation (J. H. Conway & S. P. Norton, 1979) There are

194

Hauptmoduln whose coecients agree, as those of

with character values of

M. H. Mertens

(U. Köln)

J

above,

M.

O'Nan Moonshine

12 / 48

Monstrous Moonshine II

Observation (J. H. Conway & S. P. Norton, 1979) There are

194

Hauptmoduln whose coecients agree, as those of

with character values of

J

above,

M.

Denition For a nite group

G

graded components

let

Vn

V =

L

n Vn be a graded

G-module,

are nite-dimensional. Then for each

where all

g∈G

we call

the power series

Tg (q) =

X

tr(g|Vn )q n

n the McKay-Thompson series of

M. H. Mertens

(U. Köln)

g

with respect to

O'Nan Moonshine

V.

12 / 48

Monstrous Moonshine III

Monstrous Moonshine Conjecture There is an innite dimensional graded representation

V\

of

M

whose

McKay-Thompson series are the 194 Hauptmoduln found by ConwayNorton.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

13 / 48

Monstrous Moonshine III

Monstrous Moonshine Conjecture There is an innite dimensional graded representation

V\

of

M

whose

McKay-Thompson series are the 194 Hauptmoduln found by ConwayNorton.

Theorem (AtkinFongSmith, The Moonshine module

M. H. Mertens

(U. Köln)

V\



1985)

exists (abstract existence proof ).

O'Nan Moonshine

13 / 48

Monstrous Moonshine III

Monstrous Moonshine Conjecture There is an innite dimensional graded representation

V\

of

M

whose

McKay-Thompson series are the 194 Hauptmoduln found by ConwayNorton.

Theorem (AtkinFongSmith, The Moonshine module

V\



1985)

exists (abstract existence proof ).

Theorem (R. E. Borcherds, 1992) The Moonshine module

V\

is a vertex operator algebra constructed by

FrenkelLepowskyMeurman, whose automorphism group is isomorphic to

M.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

13 / 48

Table of Contents

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

Traces of singular moduli

5

Arithmetic applications

M. H. Mertens

(U. Köln)

O'Nan Moonshine

14 / 48

The Umbral groups

There are 23 even unimodular lattices in dimension 24 with rootsystem of full rank, the Niemeier lattices. Examples:

A1 24 ,

M. H. Mertens

(U. Köln)

A2 12 .

O'Nan Moonshine

15 / 48

The Umbral groups

There are 23 even unimodular lattices in dimension 24 with rootsystem of full rank, the Niemeier lattices. Examples:

A1 24 ,

A2 12 .

For a Niemeier lattice

L,

its Umbral Group

GL

is dened as

GL := Aut(L)/Weyl(L). Examples:

GA 1

M. H. Mertens

24

= M24 ,

(U. Köln)

G A2

12

= M12 .

O'Nan Moonshine

15 / 48

Umbral Moonshine I

Observation (EguchiOoguriTachikawa, 2010) Some dimensions of irreducible representations of

M24

are multiplicities of

superconformal algebra characters of the K3 elliptic genus, which are known to be coecients of a (vector-valued) mock theta function.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

16 / 48

Umbral Moonshine I

Observation (EguchiOoguriTachikawa, 2010) Some dimensions of irreducible representations of

M24

are multiplicities of

superconformal algebra characters of the K3 elliptic genus, which are known to be coecients of a (vector-valued) mock theta function.

Theorem (T. Gannon, 2012) There is an innite-dimensional graded

M24 -module

whose

McKay-Thompson series are specic (vector-valued) mock theta functions.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

16 / 48

Umbral Moonshine II

Umbral Moonshine Conjecture (ChengDuncanHarvey, 2012) For every Umbral Group

GL ,

there is an an innite-dimensional graded

GL -module whose McKay-Thompson series are specic (vector-valued) mock theta functions.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

17 / 48

Umbral Moonshine II

Umbral Moonshine Conjecture (ChengDuncanHarvey, 2012) For every Umbral Group

GL ,

there is an an innite-dimensional graded

GL -module whose McKay-Thompson series are specic (vector-valued) mock theta functions.

Theorem (DuncanGrinOno, 2015) The Umbral Moonshine conjecture is true.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

17 / 48

Thompson Moonshine

Conjecture (HarveyRayhaun, 2015) There is an innite-dimensional graded T h-supermodule L + ⊕ W − has vanishing W = m≡0,1 (4) Wm , where Wm = Wm m m is even and vice versa, whose McKay-Thompson series X T[g] (τ ) = 2q −3 + str(g|Wm )q m

odd part if

m=0 m≡0,1 (4) are specic weakly holomorphic weight

M. H. Mertens

(U. Köln)

1 2 modular forms.

O'Nan Moonshine

18 / 48

Thompson Moonshine

Conjecture (HarveyRayhaun, 2015) There is an innite-dimensional graded T h-supermodule L + ⊕ W − has vanishing W = m≡0,1 (4) Wm , where Wm = Wm m m is even and vice versa, whose McKay-Thompson series X T[g] (τ ) = 2q −3 + str(g|Wm )q m

odd part if

m=0 m≡0,1 (4) are specic weakly holomorphic weight

1 2 modular forms.

Theorem (GrinM., 2016) The Thompson Moonshine Conjecture is true. Moreover, the occuring modular forms can be described systematically.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

18 / 48

Table of Contents

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

Traces of singular moduli

5

Arithmetic applications

M. H. Mertens

(U. Köln)

O'Nan Moonshine

19 / 48

Finite simple groups

Source: wikipedia M. H. Mertens

(U. Köln)

O'Nan Moonshine

20 / 48

The O'Nan group Some properties of

ON

ON

One of the six pariah groups.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

21 / 48

The O'Nan group Some properties of

ON

ON

One of the six pariah groups.

# ON = 460 815 505 920 = 29 · 34 · 5 · 73 · 11 · 19 · 31.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

21 / 48

The O'Nan group Some properties of

ON

ON

One of the six pariah groups.

# ON = 460 815 505 920 = 29 · 34 · 5 · 73 · 11 · 19 · 31. 30

conjugacy classes, hence

with characters

M. H. Mertens

(U. Köln)

30

irreducible representations (over

C)

χ1 , ..., χ30 .

O'Nan Moonshine

21 / 48

The O'Nan group Some properties of

ON

ON

One of the six pariah groups.

# ON = 460 815 505 920 = 29 · 34 · 5 · 73 · 11 · 19 · 31. 30

conjugacy classes, hence

with characters

30

irreducible representations (over

C)

χ1 , ..., χ30 .

Dimensions of irreducible representations:

χ1 (1) = 1,

M. H. Mertens

χ7 (1) = 26 752,

(U. Köln)

χ12 (1) = 58 311,

O'Nan Moonshine

χ18 (1) = 85 064.

21 / 48

The O'Nan group Some properties of

ON

ON

One of the six pariah groups.

# ON = 460 815 505 920 = 29 · 34 · 5 · 73 · 11 · 19 · 31. 30

conjugacy classes, hence

with characters

30

irreducible representations (over

C)

χ1 , ..., χ30 .

Dimensions of irreducible representations:

χ1 (1) = 1,

χ7 (1) = 26 752,

Zagier's basis of weight

− g4 (τ ) =

∞ X

3/2

χ12 (1) = 58 311,

χ18 (1) = 85 064.

forms:

an q n

n=−4

=−q

−4

!,+ + 2 + 26 752q 3 + 143 376q 4 + 8 288 256q 7 + O(q 8 ) ∈ M3/2 (Γ0 (4)).

M. H. Mertens

(U. Köln)

O'Nan Moonshine

21 / 48

The O'Nan group Some properties of

ON

ON

One of the six pariah groups.

# ON = 460 815 505 920 = 29 · 34 · 5 · 73 · 11 · 19 · 31. 30

conjugacy classes, hence

with characters

30

irreducible representations (over

C)

χ1 , ..., χ30 .

Dimensions of irreducible representations:

χ1 (1) = 1,

χ7 (1) = 26 752,

Zagier's basis of weight

− g4 (τ ) =

∞ X

3/2

χ12 (1) = 58 311,

χ18 (1) = 85 064.

forms:

an q n

n=−4

=−q

−4

!,+ + 2 + 26 752q 3 + 143 376q 4 + 8 288 256q 7 + O(q 8 ) ∈ M3/2 (Γ0 (4)).

M. H. Mertens

(U. Köln)

O'Nan Moonshine

21 / 48

The O'Nan group Some properties of

ON

ON

One of the six pariah groups.

# ON = 460 815 505 920 = 29 · 34 · 5 · 73 · 11 · 19 · 31. 30

conjugacy classes, hence

with characters

30

irreducible representations (over

C)

χ1 , ..., χ30 .

Dimensions of irreducible representations:

χ1 (1) = 1,

χ7 (1) = 26 752,

Zagier's basis of weight

− g4 (τ ) =

∞ X

3/2

χ12 (1) = 58 311,

χ18 (1) = 85 064.

forms:

an q n

n=−4

=−q

−4

!,+ + 2 + 26 752q 3 + 143 376q 4 + 8 288 256q 7 + O(q 8 ) ∈ M3/2 (Γ0 (4)).

M. H. Mertens

(U. Köln)

O'Nan Moonshine

21 / 48

O'Nan Moonshine Theorem 1 (Duncan-M.-Ono, 2017) There is a (virtual) innite-dimensional graded

W :=

M 0<m≡0,3

ON-module Wm

(mod 4)

whose associated McKay-Thompson series are specic weight

3 2 (mock)

modular forms.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

22 / 48

O'Nan Moonshine Theorem 1 (Duncan-M.-Ono, 2017) There is a (virtual) innite-dimensional graded

W :=

M 0<m≡0,3

ON-module Wm

(mod 4)

whose associated McKay-Thompson series are specic weight

3 2 (mock)

modular forms.

Remark We have that

1 dim W163 = (α2 + α − 393768), 2

where

l √ m α = eπ 163 = d262537412640768743.999999999999642...e. M. H. Mertens

(U. Köln)

O'Nan Moonshine

22 / 48

The relevant forms Proposition 1 (Duncan-M.-Ono, 2017) The following are true. 1

For every conjugacy class

[g]

of

ON

there is a unique mock modular

form

F[g] (τ ) = −q −4 + 2 +

X

a[g] (n)q n

n=1 of weight

3/2

for the group

Γ0 (4o(g))

satisfying the following

conditions:

M. H. Mertens

(U. Köln)

O'Nan Moonshine

23 / 48

The relevant forms Proposition 1 (Duncan-M.-Ono, 2017) The following are true. 1

For every conjugacy class

[g]

of

ON

there is a unique mock modular

form

F[g] (τ ) = −q −4 + 2 +

X

a[g] (n)q n

n=1 of weight

3/2

for the group

Γ0 (4o(g))

satisfying the following

conditions: 1

F[g] (τ ) lies (mod 4).

M. H. Mertens

(U. Köln)

in the Kohnen plus space, i.e.,

O'Nan Moonshine

a[g] (n) = 0

if

n ≡ 1, 2

23 / 48

The relevant forms Proposition 1 (Duncan-M.-Ono, 2017) The following are true. 1

For every conjugacy class

[g]

of

ON

there is a unique mock modular

form

F[g] (τ ) = −q −4 + 2 +

X

a[g] (n)q n

n=1 of weight

3/2

for the group

Γ0 (4o(g))

satisfying the following

conditions: 1

2

F[g] (τ ) lies in the Kohnen plus space, i.e., a[g] (n) = 0 if n ≡ 1, 2 (mod 4). F[g] (τ ) has a pole of order 4 at the cusp ∞ and vanishes at essentially all other cusps.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

23 / 48

The relevant forms Proposition 1 (Duncan-M.-Ono, 2017) The following are true. 1

For every conjugacy class

[g]

of

ON

there is a unique mock modular

form

F[g] (τ ) = −q −4 + 2 +

X

a[g] (n)q n

n=1 of weight

3/2

for the group

Γ0 (4o(g))

satisfying the following

conditions: 1

2

F[g] (τ ) lies in the Kohnen plus space, i.e., a[g] (n) = 0 if n ≡ 1, 2 (mod 4). F[g] (τ ) has a pole of order 4 at the cusp ∞ and vanishes at essentially all other cusps.

3

a[g] (3) = χ7 (g), and a[g] (4) = χ1 (g) + χ12 (g) + χ18 (g), a[g] (7) = more complicated . We have

M. H. Mertens

(U. Köln)

O'Nan Moonshine

and

23 / 48

The relevant forms Proposition 1 (Duncan-M.-Ono, 2017) The following are true. 1

For every conjugacy class

[g]

of

ON

there is a unique mock modular

form

F[g] (τ ) = −q −4 + 2 +

X

a[g] (n)q n

n=1 of weight

3/2

for the group

Γ0 (4o(g))

satisfying the following

conditions: 1

2

F[g] (τ ) lies in the Kohnen plus space, i.e., a[g] (n) = 0 if n ≡ 1, 2 (mod 4). F[g] (τ ) has a pole of order 4 at the cusp ∞ and vanishes at essentially all other cusps.

3

2

a[g] (3) = χ7 (g), and a[g] (4) = χ1 (g) + χ12 (g) + χ18 (g), a[g] (7) = more complicated . We have

The function

F[g] (τ ) above has integer Fourier o(g) 6= 16, then it is modular.

and

coecients.

Furthermore, if M. H. Mertens

(U. Köln)

O'Nan Moonshine

23 / 48

Strategy of the proof Take

F[g] (τ ) = −q

−4

+2+

∞ X

a[g] (n)q n

n=1

M. H. Mertens

(U. Köln)

O'Nan Moonshine

24 / 48

Strategy of the proof Take

F[g] (τ ) = −q

−4

+2+

∞ X

a[g] (n)q n

n=1 Dene

C-valued

class function

ωn : ON → C, g 7→ a[g] (n).

M. H. Mertens

(U. Köln)

O'Nan Moonshine

24 / 48

Strategy of the proof Take

F[g] (τ ) = −q

−4

+2+

∞ X

a[g] (n)q n

n=1 Dene

C-valued

class function

ωn : ON → C, g 7→ a[g] (n). Theorem 1 follows if we can show that

ωn =

30 X

mj (n)χj ,

j=1 with

mj (n) ∈ N0

M. H. Mertens

(U. Köln)

for all

j

and (suciently large)

O'Nan Moonshine

n.

24 / 48

Strategy of the proof Take

F[g] (τ ) = −q

−4

+2+

∞ X

a[g] (n)q n

n=1 Dene

C-valued

class function

ωn : ON → C, g 7→ a[g] (n). Theorem 1 follows if we can show that

ωn =

30 X

mj (n)χj ,

j=1 with

mj (n) ∈ N0

for all

j

and (suciently large)

n.

Idea of Thompson can reduce this to a nite computation.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

24 / 48

Strategy of the proof Take

F[g] (τ ) = −q

−4

+2+

∞ X

a[g] (n)q n

n=1 Dene

C-valued

class function

ωn : ON → C, g 7→ a[g] (n). Theorem 1 follows if we can show that

ωn =

30 X

mj (n)χj ,

j=1 with

mj (n) ∈ N0

for all

j

and (suciently large)

n.

Idea of Thompson can reduce this to a nite computation.

BUT: There is a dierence between 'nite' and 'feasible'. M. H. Mertens

(U. Köln)

O'Nan Moonshine

24 / 48

Table of Contents

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

Traces of singular moduli

5

Arithmetic applications

M. H. Mertens

(U. Köln)

O'Nan Moonshine

25 / 48

Construction

Let

   a b 2 ΓK,K 2 (N ) := ∈ Γ0 (N ) : |c| < K, |d| < K . c d

M. H. Mertens

(U. Köln)

O'Nan Moonshine

26 / 48

Construction

Let

   a b 2 ΓK,K 2 (N ) := ∈ Γ0 (N ) : |c| < K, |d| < K . c d

Denition For

µ ∈ Z, k ∈ 12 Z,

and

ψ

a multiplier system for

Γ0 (N )

of weight

k,

we

dene the Rademacher sum

[µ]

Rψ,k (τ ) := lim

X

K→∞

M. H. Mertens

(U. Köln)

ψ(γ)(q µ |k γ).

γ∈Γ∞ \ΓK,K 2 (N )

O'Nan Moonshine

26 / 48

Construction

Let

   a b 2 ΓK,K 2 (N ) := ∈ Γ0 (N ) : |c| < K, |d| < K . c d

Denition For

µ ∈ Z, k ∈ 12 Z,

and

ψ

a multiplier system for

Γ0 (N )

of weight

k,

we

dene the Rademacher sum

[µ]

Rψ,k (τ ) := lim

X

K→∞

ψ(γ)(q µ |k γ).

γ∈Γ∞ \ΓK,K 2 (N )

Low-weight analogue of Poincaré series.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

26 / 48

Construction

Let

   a b 2 ΓK,K 2 (N ) := ∈ Γ0 (N ) : |c| < K, |d| < K . c d

Denition For

µ ∈ Z, k ∈ 12 Z,

and

ψ

a multiplier system for

Γ0 (N )

of weight

k,

we

dene the Rademacher sum

[µ]

Rψ,k (τ ) := lim

X

K→∞

ψ(γ)(q µ |k γ).

γ∈Γ∞ \ΓK,K 2 (N )

Low-weight analogue of Poincaré series. Converges for

M. H. Mertens

k ≥ 1,

(U. Köln)

with regularization sometimes for

O'Nan Moonshine

k < 1.

26 / 48

Properties of Rademacher sums Facts Let

µ < 0. [µ]

Rψ,k

is a weight

k

mock modular form for

[−µ] with shadow R ψ,2−k

M. H. Mertens

(U. Köln)

Γ0 (N )

with multiplier

ψ

∈ M2−k (Γ0 (N ), ψ).

O'Nan Moonshine

27 / 48

Properties of Rademacher sums Facts Let

µ < 0. [µ]

Rψ,k

k mock modular form for Γ0 (N ) with multiplier ψ [−µ] with shadow R ∈ M2−k (Γ0 (N ), ψ). ψ,2−k [µ] Rψ,k has a pole of order |µ| at ∞ and vanishes at all other cusps. is a weight

M. H. Mertens

(U. Köln)

O'Nan Moonshine

27 / 48

Properties of Rademacher sums Facts Let

µ < 0. [µ]

Rψ,k

k mock modular form for Γ0 (N ) with multiplier ψ [−µ] with shadow R ∈ M2−k (Γ0 (N ), ψ). ψ,2−k [µ] Rψ,k has a pole of order |µ| at ∞ and vanishes at all other cusps. is a weight

Denition

f : H → C is called a mock modular form for Γ0 (N ) of multiplier ψ if there is a modular form g ∈ M2−k (Γ0 (N ), ψ)

A hol. function weight

k

and

s.t.

Z



fb(τ ) := f (τ ) + −τ transforms like a modular form.

g

g(z) dz (z + τ )k

is called the shadow of

f , fb is

the

corresponding harmonic Maaÿ form. M. H. Mertens

(U. Köln)

O'Nan Moonshine

27 / 48

Construction of

F[g]

Proof of Proposition 1. Let

[µ]

[µ]

2

2

Z 3 ,ψ = R 3 ,ψ | pr, the projection to the Kohnen plus space.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

28 / 48

Construction of

F[g]

Proof of Proposition 1. Let

[µ]

[µ]

2

2

Z 3 ,ψ = R 3 ,ψ | pr, the projection to the Kohnen plus space.

[−4]

[0]

2

2

−Z 3 ,1 + 2Z 3 ,1

M. H. Mertens

(U. Köln)

satises conditions 1 and 2 of Proposition 1

O'Nan Moonshine

28 / 48

Construction of

F[g]

Proof of Proposition 1. Let

[µ]

[µ]

2

2

Z 3 ,ψ = R 3 ,ψ | pr, the projection to the Kohnen plus space.

[−4]

[0]

2

2

−Z 3 ,1 + 2Z 3 ,1

satises conditions 1 and 2 of Proposition 1

Bruinier-Funke pairing yields that 1 and 2 determine a mock modular form uniquely up to addition of cusp forms, so choose cusp forms where possible to ensure 3.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

28 / 48

Construction of

F[g]

Proof of Proposition 1. Let

[µ]

[µ]

2

2

Z 3 ,ψ = R 3 ,ψ | pr, the projection to the Kohnen plus space.

[−4]

[0]

2

2

−Z 3 ,1 + 2Z 3 ,1

satises conditions 1 and 2 of Proposition 1

Bruinier-Funke pairing yields that 1 and 2 determine a mock modular form uniquely up to addition of cusp forms, so choose cusp forms where possible to ensure 3. Check that coecients are integers and that (almost) all are modular using again Bruinier-Funke.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

28 / 48

Table of Contents

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

Traces of singular moduli

5

Arithmetic applications

M. H. Mertens

(U. Köln)

O'Nan Moonshine

29 / 48

Integrality of multiplicities I

Let

Fχj (τ ) :=

X 1 χj (g)F[g] (τ ) # ON g∈ON

M. H. Mertens

(U. Köln)

O'Nan Moonshine

30 / 48

Integrality of multiplicities I

Let

Fχj (τ ) :=

X X 1 Schur mj (n)q n . χj (g)F[g] (τ ) = −q −4 + 2 + # ON n=1

g∈ON

Proposition 1 yields: level

Nχj

M. H. Mertens

Fχj

is a mock modular form of weight

3/2

of

with rational coecients and controllable shadow

(U. Köln)

O'Nan Moonshine

30 / 48

Integrality of multiplicities I

Let

Fχj (τ ) :=

X X 1 Schur mj (n)q n . χj (g)F[g] (τ ) = −q −4 + 2 + # ON n=1

g∈ON

Proposition 1 yields: level

Nχj

Fχj

is a mock modular form of weight

3/2

of

with rational coecients and controllable shadow

Checking integrality naively by Sturm bound not feasible (Nχ1

= 10 884 720)

M. H. Mertens

(U. Köln)

O'Nan Moonshine

30 / 48

Integrality of the multiplicities II

Proposition 2

Fχj

have all integer Fourier coecients.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

31 / 48

Integrality of the multiplicities II

Proposition 2

Fχj

have all integer Fourier coecients.

Proof. The

F[g]

satisfy numerous congruences modulo powers of

(proved by Sturm bound argument,

M. H. Mertens

(U. Köln)

< 250

O'Nan Moonshine

p | # ON

coecients to be checked).

31 / 48

Integrality of the multiplicities II

Proposition 2

Fχj

have all integer Fourier coecients.

Proof. The

F[g]

satisfy numerous congruences modulo powers of

(proved by Sturm bound argument, One can then verify directly that

< 250

mj (n)

p | # ON

coecients to be checked).

are

p-integral

for all

p | # ON,

hence by Proposition 1, the claim follows.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

31 / 48

Table of Contents

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

Traces of singular moduli

5

Arithmetic applications

M. H. Mertens

(U. Köln)

O'Nan Moonshine

32 / 48

Basic strategy

Fact Given convergence, Rademacher sums have a Fourier expansion whose coecients are given in terms of innite sums of Kloosterman sums

Kψ (m, n, c) =

  md+nd ∗ ∗ ψ e2πi c c d ∗

X d (c)

times

I -Bessel

M. H. Mertens

functions.

(U. Köln)

O'Nan Moonshine

33 / 48

Basic strategy

Fact Given convergence, Rademacher sums have a Fourier expansion whose coecients are given in terms of innite sums of Kloosterman sums

Kψ (m, n, c) =

  md+nd ∗ ∗ ψ e2πi c c d ∗

X d (c)

times

I -Bessel

functions.

By the triangle inequality we have

mj (n) ≥

X | str(g|Wn )| | str(1|Wn )| − |χj (g)|. # ON #CON (g) [g]6=1A

M. H. Mertens

(U. Köln)

O'Nan Moonshine

33 / 48

Basic strategy

Fact Given convergence, Rademacher sums have a Fourier expansion whose coecients are given in terms of innite sums of Kloosterman sums

Kψ (m, n, c) =

  md+nd ∗ ∗ ψ e2πi c c d ∗

X d (c)

times

I -Bessel

functions.

By the triangle inequality we have

mj (n) ≥

X | str(g|Wn )| | str(1|Wn )| − |χj (g)|. # ON #CON (g) [g]6=1A

Show that from a certain point on, the rst term dominates. M. H. Mertens

(U. Köln)

O'Nan Moonshine

33 / 48

Positivity of the multiplicities Proposition 3 The multiplicities

M. H. Mertens

mj (n)

(U. Köln)

are all non-negative for

O'Nan Moonshine

n 6= 7, 8, 12.

34 / 48

Positivity of the multiplicities Proposition 3 The multiplicities

mj (n)

are all non-negative for

n 6= 7, 8, 12.

Ingredients of the proof. Careful, explicit estimates for Selberg-Kloosterman zeta functions.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

34 / 48

Positivity of the multiplicities Proposition 3 The multiplicities

mj (n)

are all non-negative for

n 6= 7, 8, 12.

Ingredients of the proof. Careful, explicit estimates for Selberg-Kloosterman zeta functions. Write Kloosterman sums as sums over a sparse set, i.e. equivalence classes of binary quadratic forms.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

34 / 48

Positivity of the multiplicities Proposition 3 The multiplicities

mj (n)

are all non-negative for

n 6= 7, 8, 12.

Ingredients of the proof. Careful, explicit estimates for Selberg-Kloosterman zeta functions. Write Kloosterman sums as sums over a sparse set, i.e. equivalence classes of binary quadratic forms. Explicit estimates for coecients of weight 3/2 cusp forms



M. H. Mertens

(U. Köln)

mj (n) ≥ 0

O'Nan Moonshine

for

n ≥ 109.

34 / 48

Positivity of the multiplicities Proposition 3 The multiplicities

mj (n)

are all non-negative for

n 6= 7, 8, 12.

Ingredients of the proof. Careful, explicit estimates for Selberg-Kloosterman zeta functions. Write Kloosterman sums as sums over a sparse set, i.e. equivalence classes of binary quadratic forms. Explicit estimates for coecients of weight 3/2 cusp forms



mj (n) ≥ 0

for

n ≥ 109.

Check rest by inspection.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

34 / 48

Table of Contents

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

Traces of singular moduli

5

Arithmetic applications

M. H. Mertens

(U. Köln)

O'Nan Moonshine

35 / 48

Singular moduli Fact

Q = [a, b, c] be a quadratic form of discriminant D < 0 and τQ ∈ H, 2 such that aτQ + bτQ + c = 0. Then J(τQ ) is a real-algebraic integer of degree h(D).

Let

E.g.:



 −163 = −262 537 412 640 768 744 J 2 √ √   1 + −15 192 513 + 85 995 5 J =− . 2 2 

M. H. Mertens

1+

(U. Köln)

O'Nan Moonshine

36 / 48

Singular moduli Fact

Q = [a, b, c] be a quadratic form of discriminant D < 0 and τQ ∈ H, 2 such that aτQ + bτQ + c = 0. Then J(τQ ) is a real-algebraic integer of degree h(D).

Let

E.g.:



 −163 = −262 537 412 640 768 744 J 2 √ √   1 + −15 192 513 + 85 995 5 J =− . 2 2 

1+

Play an important role in explicit class eld theory (Kronecker's

th problem)

Jugendtraum, Hilbert's 12

M. H. Mertens

(U. Köln)

O'Nan Moonshine

36 / 48

Singular moduli Fact

Q = [a, b, c] be a quadratic form of discriminant D < 0 and τQ ∈ H, 2 such that aτQ + bτQ + c = 0. Then J(τQ ) is a real-algebraic integer of degree h(D).

Let

E.g.:



 −163 = −262 537 412 640 768 744 J 2 √ √   1 + −15 192 513 + 85 995 5 J =− . 2 2 

1+

Play an important role in explicit class eld theory (Kronecker's

th problem)

Jugendtraum, Hilbert's 12

Similar results are true for Hauptmoduln of genus 0 congruence subgroups and other modular functions M. H. Mertens

(U. Köln)

O'Nan Moonshine

36 / 48

Traces

Denition For a function

f : H → C,

a discriminant

(N )

−D < 0

N ∈N

dene

f (τQ ) , ω (N ) (Q)

X

TrD (f ) :=

and

(N )

Q∈Q−D /Γ0 (N ) where

(N )

Q−D = {[a, b, c] : b2 − 4ac = −D ω (N ) (Q)

M. H. Mertens

=

1 2

and

N | a},

· # StabΓ0 (N ) (Q).

(U. Köln)

O'Nan Moonshine

37 / 48

Generating functions Theorem (D. Zagier)

− q −1 + 2 +

X

(1)

TrD (J)q D

D≡0,3 (4)

=−q

−1

M. H. Mertens

!,+ + 2 − 248q 3 + 492q 4 − 4119q 7 + O(q 8 ) ∈ M3/2 (Γ0 (4)).

(U. Köln)

O'Nan Moonshine

38 / 48

Generating functions Theorem (D. Zagier)

− q −1 + 2 +

X

(1)

TrD (J)q D

D≡0,3 (4)

=−q

−1

!,+ + 2 − 248q 3 + 492q 4 − 4119q 7 + O(q 8 ) ∈ M3/2 (Γ0 (4)).

Can be extended to more general modular functions with vanishing constant terms (Bruinier-Funke, Miller-Pixton,...)

M. H. Mertens

(U. Köln)

O'Nan Moonshine

38 / 48

Generating functions Theorem (D. Zagier)

X

− q −1 + 2 +

(1)

TrD (J)q D

D≡0,3 (4)

=−q

−1

!,+ + 2 − 248q 3 + 492q 4 − 4119q 7 + O(q 8 ) ∈ M3/2 (Γ0 (4)).

Can be extended to more general modular functions with vanishing constant terms (Bruinier-Funke, Miller-Pixton,...)

Denition/Theorem For

N ∈ N,

we call

(N )

H (N ) (D) := TrD (1)

number and set

the generalized Hurwitz class

[Γ(1) : Γ0 (N )] X (N ) + H (D)q D . 12 D mock modular form of level 4N .

H (N ) (τ ) := − H (N )

is a weight 3/2

M. H. Mertens

(U. Köln)

O'Nan Moonshine

38 / 48

Traces and Rademacher series Proposition 5 Let

N ∈N

such that

(N )

X0 (N )

Tr4 (D) := where

J (N )

has genus

0

and

 1  (N ) (N ) (N/d) TrD (J2 ) − TrD (J (N/d) ) , 2

denotes the Hauptmodul for

the unique modular function for

Γ0 (N )

Γ0 (N )

and

(N )

J2

= q −2 + O(q)

is

with this Fourier expansion at

d := gcd(N, 2). Then X (N ) T (N ) (τ ) := −q −4 + const + Tr4 (D)q D

innity and no poles anywhere else and

we have

D>0

=

[−4],+ R 3 ,4o(g) (τ ) 2

for some rational numbers

c1

and

c2 c1 − H (N ) (τ ) + H (N/d) (τ ) 2 2 c2 .

In particular, the function

T (N )

has

integer Fourier coecients. M. H. Mertens

(U. Köln)

O'Nan Moonshine

39 / 48

McKay-Thompson series and traces

N where genus(X0+ (N )) = 0.

There is an analogue of Proposition 5 for

genus(X0 (N )) > 0,

M. H. Mertens

(U. Köln)

but

O'Nan Moonshine

40 / 48

McKay-Thompson series and traces

N where genus(X0+ (N )) = 0.

There is an analogue of Proposition 5 for

genus(X0 (N )) > 0, ⇒

but

We can express character values of

ON

in terms of traces of

singular moduli, generalized class numbers and coecients of cusp forms.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

40 / 48

McKay-Thompson series and traces

N where genus(X0+ (N )) = 0.

There is an analogue of Proposition 5 for

genus(X0 (N )) > 0, ⇒

but

We can express character values of

ON

in terms of traces of

singular moduli, generalized class numbers and coecients of cusp forms.

Example

F1A = T (1) , F7AB = T (7) + 4H (1) − 4H (7) , 12 6 4 F11A = T (11,+) + H (1) − H (11) − G (11) , 5 5 5 where

+ G (11) (τ ) = q 3 − q 4 − q 11 + O(q 12 ) ∈ S3/2 (44).

M. H. Mertens

(U. Köln)

O'Nan Moonshine

40 / 48

Table of Contents

1

Monstrous Moonshine Preliminaries A connection between the Monster and modular functions

2

Other Moonshine

3

O'Nan Moonshine Rademacher sums Integrality Positivity

4

Traces of singular moduli

5

Arithmetic applications

M. H. Mertens

(U. Köln)

O'Nan Moonshine

41 / 48

ON

knows

p-parts

in ideal class groups

Theorem 2 (DuncanM.Ono, 2017) Suppose that

−D < 0

is a fundamental discriminant. Then the following

are true:

M. H. Mertens

(U. Köln)

O'Nan Moonshine

42 / 48

ON

knows

p-parts

in ideal class groups

Theorem 2 (DuncanM.Ono, 2017) Suppose that

−D < 0

is a fundamental discriminant. Then the following

are true: 1

If

−D < −8

is even and

g2 ∈ ON

has order

2,

dim WD ≡ tr(g2 |WD ) ≡ −24H(D)

M. H. Mertens

(U. Köln)

O'Nan Moonshine

then

(mod 24 ).

42 / 48

ON

knows

p-parts

in ideal class groups

Theorem 2 (DuncanM.Ono, 2017) Suppose that

−D < 0

is a fundamental discriminant. Then the following

are true: 1

If

−D < −8

is even and

g2 ∈ ON

has order

2,

dim WD ≡ tr(g2 |WD ) ≡ −24H(D)

2

If

p ∈ {3, 5, 7},



−D p



= −1

and

gp ∈ ON

then

(mod 24 ).

has order

( −24H(D) (mod 32 ) dim WD ≡ tr(gp |WD ) ≡ −24H(D) (mod p)

M. H. Mertens

(U. Köln)

O'Nan Moonshine

p,

then

if if

p = 3, p = 5, 7.

42 / 48

The BSD-conjecture and Waldspurger's theorem I Conjecture (Birch and Swinnerton-Dyer) Let

E/Q

be an elliptic curve. Then we have that

Q #X(E) · Reg(E) ` c` (E) L(r) (E, 1) = , r!ΩE (#E(Q)tors )2 where

r

denotes the order of vanishing of

the MordellWeil rank of

M. H. Mertens

(U. Köln)

L(E, s)

at

s = 1,

which equals

E.

O'Nan Moonshine

43 / 48

The BSD-conjecture and Waldspurger's theorem I Conjecture (Birch and Swinnerton-Dyer) Let

E/Q

be an elliptic curve. Then we have that

Q #X(E) · Reg(E) ` c` (E) L(r) (E, 1) = , r!ΩE (#E(Q)tors )2 where

r

denotes the order of vanishing of

the MordellWeil rank of

L(E, s)

at

s = 1,

which equals

E.

Theorem (Waldspurger, Kohnen) Let

N ∈N

be odd and square-free,

F ∈ S2k (Γ0 (N ))

be a newform and

2

the image of

f

under the Shimura correspondence. For a

suitable fundamental discriminant

hf, f i = M. H. Mertens

+ f ∈ Sk+ 1 (Γ0 (4N ))

(U. Köln)

D

we have

hF, F iπ k 1

2ω(N ) (k − 1)!|D|k− 2 L(F, D; k) O'Nan Moonshine

· |bf (|D|)|2 . 43 / 48

Quadratic twists

Connection through Modularity Theorem:

Lemma Let

−D < 0

be a suitable fundamental discriminant and

curve of odd, square-free conductor

N.

E/Q an elliptic 2 newform

Denote the weight

) and its Shintani lift by P E by FE n∈ S2 (N + fE (τ ) = ∞ b (n)q ∈ S n=3 E 3/2 (4N ). If E(−D) denotes twist of E by −D , we have associated to

the quadratic

L(E(−D), 1) = CE · |bE (D)|2 , ΩE(−D) where

CE

is a constant depending on

M. H. Mertens

(U. Köln)

E,

but not (really) on

O'Nan Moonshine

D.

44 / 48

ON

knows about Selmer and Tate-Shafarevich groups I

Theorem 3 (DuncanM.Ono, 2017)

= 11 or 19 and −D < 0 is a fundamental discriminant = −1, and gp ∈ ON has order p, then the following are

Assume BSD.  If p for which

−D p

true.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

45 / 48

ON

knows about Selmer and Tate-Shafarevich groups I

Theorem 3 (DuncanM.Ono, 2017)

= 11 or 19 and −D < 0 is a fundamental discriminant = −1, and gp ∈ ON has order p, then the following are

Assume BSD.  If p for which

−D p

true. 1

Sel(Ep (−D))[p] 6= {0}

if and only if

dim WD ≡ tr(gp |WD ) ≡ −24H(D)

M. H. Mertens

(U. Köln)

O'Nan Moonshine

(mod p).

45 / 48

ON

knows about Selmer and Tate-Shafarevich groups I

Theorem 3 (DuncanM.Ono, 2017)

= 11 or 19 and −D < 0 is a fundamental discriminant = −1, and gp ∈ ON has order p, then the following are

Assume BSD.  If p for which

−D p

true. 1

Sel(Ep (−D))[p] 6= {0}

if and only if

dim WD ≡ tr(gp |WD ) ≡ −24H(D)

2

Suppose further that

L(Ep (−D), 1) 6= 0.

Then

(mod p).

p | #X(Ep (−D))

if

and only if

dim WD ≡ tr(gp |WD ) ≡ −24H(D) (mod p).

M. H. Mertens

(U. Köln)

O'Nan Moonshine

45 / 48

ON

knows about Selmer and Tate-Shafarevich groups II

Theorem 4 (DuncanM.Ono, 2017) Let

N ∈ {14, 15}

−D < 0

and write

N = p0 p, p0 < p,

δp := p−1 2 . If −D = −1, then p

and let

is a fundamental discriminant for which



the

following are true.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

46 / 48

ON

knows about Selmer and Tate-Shafarevich groups II

Theorem 4 (DuncanM.Ono, 2017) Let

N ∈ {14, 15}

−D < 0

and write

N = p0 p, p0 < p,

δp := p−1 2 . If −D = −1, then p

and let

is a fundamental discriminant for which



the

following are true. 1

Sel(EN (−D))[p] 6= {0}

if and only if 0

tr(gp0 |WD ) ≡ tr(gN |WD ) ≡ δp · (H(D) − δp H (p ) (D))

M. H. Mertens

(U. Köln)

O'Nan Moonshine

(mod p).

46 / 48

ON

knows about Selmer and Tate-Shafarevich groups II

Theorem 4 (DuncanM.Ono, 2017) Let

N ∈ {14, 15}

−D < 0

and write

N = p0 p, p0 < p,

δp := p−1 2 . If −D = −1, then p

and let

is a fundamental discriminant for which



the

following are true. 1

Sel(EN (−D))[p] 6= {0}

if and only if 0

tr(gp0 |WD ) ≡ tr(gN |WD ) ≡ δp · (H(D) − δp H (p ) (D))

2

(mod p).

L(EN (−D), 1) 6= 0. p | #X(EN (−D)) if and only if

Suppose further that Then

0

tr(gp0 |WD ) ≡ tr(gN |WD ) ≡ δp · (H(D) − δp H (p ) (D))

M. H. Mertens

(U. Köln)

O'Nan Moonshine

(mod p).

46 / 48

Example

D

tr2 (D)

H14 (D)

Diff 14 (D)

rk(E14 (−D))

#X(E14 (−D))

15

-96256

-30

3

0

1

23

-1746944

-45

0

2

1

39

-165...168

-60

4

0

1

71

-156...880

-105

4

0

1 1

79

-669...192

-75

3

0

239

-619...040

-225

0

2

1

2671

-163...664

-345

0

0

49

Table: Examples for the curve

H14 (D) := δ7 (H(D) − δ7 H (2) (D)),

E14

tr2 (D) := tr(g2 |WD ),

Diff 14 (D) := H14 (D) − tr2 (D) M. H. Mertens

(U. Köln)

O'Nan Moonshine

47 / 48

Thank you for your attention.

M. H. Mertens

(U. Köln)

O'Nan Moonshine

48 / 48