Online Simultaneous State Estimation and ... - Semantic Scholar

Report 3 Downloads 217 Views
Online Simultaneous State Estimation and Parameter Adaptation for Building Predictive Control Mehdi Maasoumy, Barzin Moridian, Meysam Razmara, Mahdi Shahbakhti, Alberto Sangiovanni-Vincentelli 2013 ASME Dynamic Systems and Control Conference (DSCC’13) Stanford University October 21-23, 2013

Mehdi Maasoumy PhD Candidate University of California, Berkeley October 21, 2013 Sponsored by CREST, iCyPhy, and TerraSwarm Research Consortiums. A collaboration of UC Berkeley, and Michigan Technological University.

1

What’s the biggest energy consumer sector? Buildings Consume Significant Energy: • • • • •

40% of total US energy consumption 72% of total US electricity consumption 55% of total US natural gas consumption $ 370 Billion: Total US annual energy cost 200%: Increase in US electricity cons. since 1990.

Source: Buildings Energy Data Book 2006

Directly related to HVAC

Mehdi Maasoumy

University of California, Berkeley

2

Existing HVAC Control Logic

Lack of Integrated System Dynamics Model PID

On-Off

On-Off

On-Off UC Berkeley, Cory Hall

Mehdi Maasoumy

University of California, Berkeley

3

Previous works

2008 DB Crawley, (Simulation)

2010 - Y. Ma, (MPC) - F. Oldewurtel, (SMPC) - K Deng, (Model Reduction) - C Liao, (Occupancy Modeling) - Rasmussen (Gain Schedule Ctrl)

2009 M. Wetter, (modeling and simulation)

2012 - B. Hencey, (Estimation) - B. Rasmussen (Vapor Comp. Sys.) - M. Maasoumy (RMPC) - Y. Yang (BAS)

2011 - Y. Ma, (DMPC) - M. Maasoumy, (Hierarchical) - TX Nghiem, (Scheduling)

2013 - Alleyne (Optimal Partitioning)

Less Work on Improving the Quality of Building Dynamic Models Mehdi Maasoumy

University of California, Berkeley

4

Energy Savings of MPC Compared to RBC 60 Building Type I

Energy Saving Compared to Rule Based Control [%]

41 40

Building Type V

24 16

20

7

12

Model uncertainty [%]

0 0

25

50

75

100

-20 -23

-26

-40 -60

-38

High fidelity models -70

-80

-93

-100

Mehdi Maasoumy

University of California, Berkeley

5

Outline • Parameter Adaptive Building (PAB) Model Architecture • Berkeley Test Bed o Mathematical Model o Offline Calibration Results • Michigan Test-bed o Mathematical Model o Offline Calibration Results • EKF / UKF Formulations • Results Mehdi Maasoumy

University of California, Berkeley

6

Outline • Parameter Adaptive Building (PAB) Model Architecture • Berkeley Test Bed o Mathematical Model o Offline Calibration Results • Michigan Test-bed o Mathematical Model o Offline Calibration Results • EKF / UKF Formulations • Results Mehdi Maasoumy

University of California, Berkeley

7

Architecture of the proposed PAB model Proposed Architecture

Problem Statement • Highly time varying, and nonlinear nature of building dynamics. (e.g. Time-varying convective heat transfer coefficient of outside air). • Model-based controllers often need accurate estimate of all states, but not all the states of building model are measurable

Joint parameter-state estimation

PAB Model: Parameter Adaptive Building Model Mehdi Maasoumy

“On-line estimation” of states and unknown parameters of buildings… … leading to the: Parameter-Adaptive Building (PAB) model.

University of California, Berkeley

8

Proposed Architecture

Mehdi Maasoumy

University of California, Berkeley

9

Outline • Parameter Adaptive Building (PAB) Model Architecture • Berkeley Test Bed o Mathematical Model o Offline Calibration Results • Michigan Test-bed o Mathematical Model o Offline Calibration Results • EKF / UKF Formulations • Results Mehdi Maasoumy

University of California, Berkeley

10

Test-bed: Berkeley

Mehdi Maasoumy

University of California, Berkeley

11

Plant Modeling

Unmodeled dynamics

• Energy balance for a room node:

Thermal and circuit model of a wall with window Mehdi Maasoumy

University of California, Berkeley

12

Plant Modeling: Unmodeled Dynamics •

External heat gain



Internal heat gain

Disturbance:

which results to:

Leading to the LTI system:

Mehdi Maasoumy

University of California, Berkeley

13

Proposed Architecture

Mehdi Maasoumy

University of California, Berkeley

14

Offline Calibration: Berkeley Test-bed Mathematical Model

Scale-up to Building Level

Room Temperature [oC]

Data-Driven Predictive Model

Disturbance [oC/hr]

Time [hr]

Mehdi Maasoumy

Time [hr]

University of California, Berkeley

15

Outline • Parameter Adaptive Building (PAB) Model Architecture • Berkeley Test Bed o Mathematical Model o Offline Calibration Results • Michigan Test-bed o Mathematical Model o Offline Calibration Results • EKF / UKF Formulations • Results Mehdi Maasoumy

University of California, Berkeley

16

Test-bed at Different Climates

Mehdi Maasoumy

University of California, Berkeley

17

Lakeshore Center: Michigan Test-bed

Front View

Top View

Mehdi Maasoumy

University of California, Berkeley

18

Test bed: Office Space

Mehdi Maasoumy

University of California, Berkeley

19

Lakeshore Building HVAC System AHU

VAV

GSHP

Mehdi Maasoumy

University of California, Berkeley

20

Schematic of the Room

Mehdi Maasoumy

University of California, Berkeley

21

Proposed Architecture

Mehdi Maasoumy

University of California, Berkeley

22

Sensor Readings (Michigan test bed) Lakeshore building at Michigan Technological University

Mehdi Maasoumy

University of California, Berkeley

23

Offline Calibration (Michigan test bed)

!!! Mehdi Maasoumy

University of California, Berkeley

24

Outline • Parameter Adaptive Building (PAB) Model Architecture • Berkeley Test Bed o Mathematical Model o Offline Calibration Results • Michigan Test-bed o Mathematical Model o Offline Calibration Results • EKF / UKF Formulations • Results Mehdi Maasoumy

University of California, Berkeley

25

Proposed Architecture

Kalman Filter

Mehdi Maasoumy

University of California, Berkeley

26

Room Temperature Dynamics 𝒙𝟏 = 𝑥6 − 𝑥7 − 𝑥8 − 𝑥9 − 𝑥10 𝑥15 − 𝑥10 𝑢2 𝑐𝑎 𝑥1 +𝑥6 𝑥2 + 𝑥7 𝑥3 + 𝑥8 𝑥4 + 𝑥9 𝑥5 + 𝑐𝑎 𝑢1 𝑢2 + 𝑇5 𝑥15 + 𝐴𝑤𝑖𝑛 𝜏 𝑄𝑟𝑎𝑑 + 𝑄𝑖𝑛𝑡 . 𝑥10 𝒙𝟐 = 𝑥1 − 2𝑥2 + 𝑇2 . 𝑥11

𝒙𝟑 = 𝑥1 − 2𝑥3 + 𝑇3 . 𝑥11 𝒙𝟒 = 𝑥1 − 2𝑥4 + 𝑇4 . 𝑥11

States: 𝒙𝟏 = 𝑇𝑟1 𝒙𝟐 = 𝑇𝑤1,2 𝒙𝟑 = 𝑇𝑤1,3 𝒙𝟒 = 𝑇𝑤1,4 𝒙𝟓 = 𝑇𝑤1,5

𝒙𝟓 = 𝑥1 𝑥12 − 𝑥12 + 𝑥13 𝑥5 + 𝑇5 𝑥13 + 𝐴𝑤 51 𝑥14 𝑄𝑟𝑎𝑑 𝒙𝒊 = 0

∀𝑖 = 6, 7, … , 15.

Parameters: 1

1

𝑥6 = 𝐶 𝑟 𝑅

𝑥7 = 𝐶 𝑟 𝑅

1

𝑥9 = 𝐶 𝑟 𝑅

1 121

𝑥𝑡 = 𝑓 𝑥𝑡 , 𝑢𝑡 , 𝑑𝑡 , 𝑡

1

𝑥8 = 𝐶 𝑟 𝑅

𝑦𝑡 = 𝐶𝑥𝑡

1 141

1

where:

𝒙 = 𝒙𝟏 , 𝒙𝟐 , … , 𝒙𝟓 , 𝒙𝟔 , 𝒙𝟕 , … , 𝒙𝟏𝟓

States and:

𝑇 𝑢 = 𝑠1 𝑚𝑟1

Parameters

𝑇

1 151

1 𝑤 𝑅𝑤

𝑥10 = 𝐶 𝑟

𝑥11 = 𝐶

1

1

𝑥12 = 𝐶 𝑤 𝑅

51 511

α

𝑥14 = 𝐶 𝑤

1 131

51

1

𝑥13 = 𝐶 𝑤 𝑅

51 515

𝑥15 =

1 𝑤𝑖𝑛 𝑅15

27

UKF and EKF Algorithms Used to update the current estimate of state and parameters as new measurements arrive…

Mehdi Maasoumy

University of California, Berkeley

28

Outline • Parameter Adaptive Building (PAB) Model Architecture • Berkeley Test Bed o Mathematical Model o Offline Calibration Results • Michigan Test-bed o Mathematical Model o Offline Calibration Results • EKF / UKF Formulations • Results Mehdi Maasoumy

University of California, Berkeley

29

Offline v.s. Online Parameter Identification w/o parameter update Calibration period

Prediction period

Online Parameter Adaptation using EKF

Online Parameter Adaptation using UKF Mehdi Maasoumy

University of California, Berkeley

30

Summary

 Developed a framework for simultaneous state estimation and parameter adaptation of building predictive models.  Developed a Parameter-Adaptive Building (PAB) model

 Applied Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) for simultaneous state estimation and parameter adaptation of the model.

Mehdi Maasoumy

University of California, Berkeley

31

Future Work Proposed Architecture

Utilize the PAB model for adaptive model predictive control of buildings*.

* Mehdi Maasoumy, Meysam Razmara, Mahdi Shahbakhti, Alberto Sangiovanni-Vincentelli “Handling Model Uncertainties in Model Predictive Control for Energy Efficient Buildings”, International Journal of Energy and Buildings. Submitted. (Journal Submission based on the extension of this work) 32

Thanks for your attention!!!

Thanks for your attention!!! Questions…?

Mehdi Maasoumy

University of California, Berkeley

33