Gröbner bases of toric ideals and their application Hidefumi Ohsugi Kwansei Gakuin University
ISSAC 2014 tutorial, Kobe, July 22, 2014
1 / 75
Gröbner bases
Toric ideals
Integer programming
Triangulations
Contingency tables
Contents Part I. Introduction to Gröbner bases 1
Gröbner bases
Part II. Gröbner bases of toric ideals 2 3 4 5 6
Toric ideals Application to integer programming Application to triangulations of convex polytopes Application to contingency tables (statistics) Quadratic Gröbner bases (if possible)
2 / 75
Gröbner bases
Toric ideals
Integer programming
Triangulations
Contingency tables
Gröbner bases and toric ideals Gröbner bases A “very good” set of polynomials keyword: division of a polynomial (by several polynomials in n variables.) invented by B. Buchberger in 1965. (“standard bases” H. Hironaka in 1964.) Elimination Theorem for systems of polynomial equations implemented in a lot of mathematical software Mathematica, Maple, Macauley2, Singular, CoCoA, Risa/Asir, .... 3 / 75
Gröbner bases
Toric ideals
Integer programming
Triangulations
Contingency tables
Gröbner bases and toric ideals
Toric ideals Prime ideals generated by binomials Gröbner bases of toric ideals have a lot of application commutative algebra, algebraic geometry triangulations of convex polytopes integer programming contingency tables (statistics) ···
4 / 75
Gröbner bases
Toric ideals
Integer programming
Triangulations
Contingency tables
System of linear equations Example f1 = x1 + x3 + 3x4 = 0 f2 = x2 − x3 − 2x4 = 0 f3 = 2x1 + 3x2 − x3 = 0
For example, which monomial in f = x12 + 2x1 x2 x3 − 3x1 + x35 + 5 shoud be the largest?
6 / 75
Gröbner bases
Toric ideals
Integer programming
Triangulations
Contingency tables
Monomial order Definition Mn : set of all monomials in the variables x1 , . . . , xn A total order < on Mn is called a monomial order if < satisfies the following: 1 u ∈ Mn , u 6= 1 =⇒ 1 < u. 2 u, v , w ∈ Mn , u < v =⇒ uw < vw.
Lexicographic order Example (Lexicographic order (x1 > · · · > xn )) def
x1a1 x2a2 · · · xnan >lex x1b1 x2b2 · · · xnbn ⇐⇒ a1 > b1 or a1 = b1 and a2 > b2 or a1 = b1 , a2 = b2 , and a3 > b3 or .. . For example, x1 >lex x2100 x3 x12 x22 x5 >lex x12 x2 x3 x4 8 / 75
Gröbner bases
Toric ideals
Integer programming
Triangulations
Contingency tables
(Degree) Reverse lexicographic order Example (Reverse lexicographic order (x1 > · · · > xn )) def
x1a1 x2a2 · · · xnan >revlex x1b1 x2b2 · · · xnbn ⇐⇒ Pn Pn a > i i=1 i=1 bi or Pn Pn and an < bn i=1 ai = i=1 bi or Pn Pn a = b , a and an−1 < bn−1 n = bn i=1 i i=1 i .. . For example, x1 x3 > x4 > x5 ) Gröbner bases of IA with respect to