PhysicsMidterm : 2006-2007 Name: Date: is to providestudentswith the opportunityto PURPOSE:Thepurposeof this assessment demonstratemasteryof topicscoveredduring the first of the yearin PhysicsClassat tools,kinematics,dynamics, Bow High School.Topicscoveredincludemathematical motion. vectors,andmulti-dimensional
UsefuI Equationsilnformation: 1" =v,2 +2ad t1 =vi + at; d =v,t +-4t'', '.r'
dr-dr.
rz-tt
:
(r=
v:-t
tz-tr
tz-tt
Fn", = mobieaAohiecti
f r
static..friction
--tt Itstatict
W*juo
F N)
1, l=!i+vvt-:8t';
x - - x i+ v x i t;
8ro* =g'81
z
v r= tr,i
m; sec-
*
= mobi""r g
= F F strding. Triction lt rtianrg N
vr=vr. -Et i
d*=0
a r= -8
?
SETUP #1: The Falline Sphere
EXPERIMENTAL
DATA/GRAPIVANALYSIS: The following data was collected for the time required for a sphereto fall various distancesfrom rest in the physicsclassroom:
t.D Distance FaIlen (cm)
Time Required (sec)
to
ill
70
.l +l
bqrn
K€Yt G#
o.o-o
E
Tx€oRy
o
b n, c){
*{
TJ g r
30
, zzl
s -5
tl0
.268
6
SO
. ?q8
60
, \L+
o,5
6-',
D.t{ O,l O 0.x- O,3 {'^o (:"r\ / a. Graph the distanceversustime data on the axes provided and draw a best fit curve through the data.
b. Use unit analysis to demonstratewhich of the following equationsis the dimensionally consistent,where d is the distancefallen, g is the gravitational acceleration.and / is the time:
I
llnl: {
't
d
mr".t,'-rn
d
itnq-'.og'*o.t{, Crrn5r, i r. 0,1
lr
'.
=@
I
trnr{sJr no} *,"i4 q nut dna4s,*.,".i.1
d --8 !
(v
V
tv)
rn
s.& 1
[ **.
*
Crr^s,:{ c r,-l
fh 5'A"g
c. Use the equation you selectedto createa graph of distancefallen versustime
predicted by theory. Comment regarding how closely the data and theory agree.
+.('")
o.o I o.r lo.zl o.3 lo.q I o.5
d=*?f-- rl, l q .tt-l t' (*)
o . o o o.0qq0"rq6 o , Y t l1
tl
+
| ?\
"rT 'i
d. Qualitatively describewhat happensto the velocity of the ball as it falls. Develop a convincing argumentusing the shapeof the distance-timegraph to support your answer. Thq- vq-l3