Physik

Report 2 Downloads 187 Views
Ballistic Spin Resonance

Joshua Folk UBC Regensburg, 2008

Types of Spin Resonance Magnetic: Small oscillating transverse Bx sin(ωt)

+ Large static Bz

EDSR: Oscillating electric field E sin(ωt)

Hso ~ + α(k x σ)

Ballistic: periodic trajectory with period T=2π/ω

Hso ~ + α(k x σ)

=

Rapid depolarization when gμB=hω

Thanks to: Simulations My group Sergey Frolov (ex) Ananth Venkatesan (ex) Wing Wa Yu Yuan Ren Chung-Yu Lo George Kamps

S. Luescher, J.C. Egues, G. Usaj Heterostructures W. Wegscheider Funding CIFAR, CFI, NSERC

Outline

- Electrical measurement of pure spin currents - Quantum point contacts as injectors and detectors - Long-distance spin transport (> 50 microns) - Ballistic spin resonance

Detecting pure spin currents in a nonlocal geometry Injector circuit

Spin current

Detector circuit

V ferromagnets Jedema, van Wees et al, Nature 2002; dating back to Johnson and Silsbee, PRL 1985.

τs ∼ 1ns gµB B π!

=

vF channel width Vspin Iinj ∝ Pinj Pdet

Nanostructures in GaAs/AlGaAs electron gas Rspin =

Vspin (x) ∼

−x

R Pinj Pdet λs e λs Iinj 2L

Vspin (x) ∝ λs e

Gate Voltage(s)

−x λs

Gates

−x L−x ) sinh( λ

R R Vspin (x) ∼ Iinj 2L Pdet λsse λs injP detλ 2L Pinj −x λs

Vspin spin (x) V (x) ∝ ∝λ λssesinh( L−x λs )

L e λs

s

sinh( L−x ) λ

s λ ∼ (x) 0 ∼ Iinj R Pinj PdetBias Vsspin λ s L 2L e λs λs ∼ 30µm Voltage sinh( L−x ) λs V (x) ∝ λ spin s L λs = ∞

This material:

e λs 11 cm−2 −2 11 1.1 × 10 1.4

nee = µ = 4 × 1066 cm22 /V s → mf p ∼ 50µm 17µm V ∝ P ∝ I2

= (Idc + I0 sin(ωt))22 2 sin(ωt) + + sin sin22(ωt) (ωt) = Idc + 2Idc I0 sin(ωt) λs = 50µm

An alternative spin contact for 2DEGs Injector circuit

Spin current

Detector circuit

V

An alternative spin contact for 2DEGs Injector circuit

Spin current

Detector circuit

V - Quantum point contacts allow injection and detection with nearly 100% polarization - Require external magnetic field and low temperature.

Device geometry

Quantum point contact injector or detector A

V

Charge current flows to left, spin current to right

1μm channel width

Quantum point contacts:

Quantized Conductance

In-plane B=10T A

g (e2/h)

---------- B = 0T ---------- B =10T

Vgate 1µm Gate voltage (mV)

Spin-resolved plateau, transmits only spin up

Detecting spin currents Detector spacing 10μm to tec e D

2

3e

/h

ond C r

Inj

nce a t uc

In-plane B=10T

ec tor Co nd uc ta

nc e

2/h e 2

1 e2

/h 1e 2

2 e2

/h

3 e2

/h

/h

Spin voltage (µV)

A

1.0 0.5 0.0 -90

Inje

-100

-80

ctor

-80

-70

Gat

-60

eV olta ge

-60 -50

(mV

)

-40 -40

-20 0

Vo e t a rG

to

c Dete

V)

(m ltage

V

Detecting spin currents Detector spacing 10μm

Inj ec

ce tan

tor

c

u ond

rC

to tec e D

Spin voltage (µV)

2/h 3e

2/h 2e

Co n

du

1e

2

1 e2

/h

2 e2

/h

cta

/h

nc

e

3 e2

/h

1.0 0.5 0.0 -90

Inje

-100

-80

ctor

Gat

Vspin (x) ∼

-80

-70

e V -60 olta ge -50 (mV )

-60 -40

-40

-20 0

ate G r o ct Dete

V)

e (m g a t l Vo

R Iinj 2L Pinj Pdet λs e

λs = 50µm

−x λs

Anisotropy in field dependence due to anisotropy in relaxation

110

Bin-plane

110

T=250mK Spin voltage (nV)

1200

A

800 400 0 0

2

4

6

Bin-plane (T)

8

10

V

Anisotropy in field dependence

110

Bin-plane

110

Spin voltage (nV)

1200 800

T=250mK

400 A

0 0

2

4

6

8

10

Bin-plane (T)

•Crystal axis anisotropy in SOI •Geometric anisotropy: long intrinsic mean free path

leads to rapid bouncing across channel, with slow diffusive motion along channel

V

p

y

p

x

y

px

110

110 E!

n u t h y 0 D i s n g e u . t r r l e w r r v y e s e m , p h s n r s 7 n es s p i i t e i e n l 2 i n e d d l . i h 2 n s u 5 p c st o . g th au a R s c g on he f b e eo e s s m . p p s fin m ch i a p e n a e t r e in m i rg n H i e ffi c e a c or n fo l t f ie bi t e e r a ti s ntl t i fo y nr b ac i t a p l

c a onn c e o bulk asymmetry

110

Bin-plane

V

A

F I G el . d s 1: i a n d (c r r uc ol t ow ed or i v s o b ) e n O ly Ω y R lin R e I . a ( ) I s O (α ns p) hb a e I t = a ) l = : (

structural asymmetry

110

Ballistic Spin Resonance for 110 spins Duckheim PRB 07

Anisotropy in field dependence

110

Bin-plane

110

Spin voltage (nV)

1200 800

T=250mK

400 A

V

0 0

2

4

6

8

10

Bin-plane (T)

•Crystal axis anisotropy in SOI •comes from cancellation between linear structural (Rashba) and bulk (Dresselhaus) asymmetry terms in SOI hamiltonian

•anisotropy is weak in GaAs heterostructures due to strong large structural asymetry

Anisotropy in field dependence

110

Bin-plane

110

Spin voltage (nV)

1200 800

T=250mK

400 A

0 0

2

4

6

8

10

Bin-plane (T)

•Crystal axis anisotropy in SOI •Geometric anisotropy: long intrinsic mean free path

leads to rapid bouncing across channel, with slow diffusive motion along channel

V

i r t m ik pl

f

ce

s

si

t

spins relax due to transverse field 110 spins relax due to Bso(110)

typical trajectory in channel

comes from k(110)

Bso(110)

0

i

FI h da G r fi py o in e li s ga ad d (r eld . 1 . t r ed s i : e e d s a n d (c h o f p r u o pu t t ect row ce lor d y h p x s p e ive s) b o c re n p a l i es S ly Ω y i O R p 19 n o R l n a ne f I . o s a p t S ( In (p sh ) . ω fu of lit O α se ) b a) t I t n = : = aM fi L τ ct the ing le ( α b β E gur = ion re in ads ) Th (p lac om s 2 a t t is e s y , k en i ( of o c c

px

110

a

E!

θ!

nd cs M he e. in oit th in pin a t W g s er d p a e n t r i s e o PA a n e d th p j e h he so so la g r e i a A C r n a i i d i c v i n n b n a t S z e s as o t r n r e a ce te nt re at D in ility c o r i u m n e f n u m e s d io s o ( i b n en r pi tw n e D t m c a e n sem to h t o r n a y kh e t n n t e p c s t r : e , ei p rp of e o -di d o ic c l o d 7 o 3 : Un m l re th be ar m its s ni on h e . t a i c t e e 2 e d O i a n z a r w v a 3 a t i c . z s s 1. uc ren -b t er n a io sp ee ti sio sso o s t , i ) ys B to t b i n in n o n c n a t o 7 e 3 o te a r ly n of s R c l ia r y m . n n ff c 2 6 d t us as an el ted 1 h , e a er s d- an on .F s e ce hb b ec s 2 r c g r ing le str os tr r sp pt a e tro pi , a o i 10 ie u b i 7 d n ibi an st n nc tr l 6 e u r , l d s 1 r s th . t o s t i c 3 y H 1 t u 0 i ,1 pi e o r ctu he n u ty D ng s all . 2 p r v ,1 n s rre w re ly tem o a e e s , p v 3 7 e i nt hi ss re s i ss s a n s p i e n l 2 ffi a i n e d l . h d . 2 s c . t th ibil tro c s t o 5 p in h a uc . n h o a i R le ien e t n c ge e us ed g e f y b e t c . om sp sp o t s fin m ch 20 in e n s t in- in t o pi em a ar i c r r d i h o effi nc H -o e n ge u a l c em c or n fo l all o t f ie bi t e t w ed e e c h n t o f r i a t t m l i s o i er y n s o a nt e sp f w r a i t c b n s e er n e i p t a ag con al lect re in p l y fi n e fi e ri so c n rb tic gur lds c a on ti r fi ati co ra nce o ar eld on up dio u s y d of lin , t sp efi t g h o in n he i s a n b ed s t tan rota g

110

110

Bin-plane

Ballistic Spin Resonance for 110 spins

Bso(110)

Duckheim PRB 07

Ballistic Spin Resonance for 110 spins

Bin-plane

110

typical trajectory in channel

Bso(110)

Fast relaxation when guB matches characteristic frequency of Bso(110)

τs ∼ 1ns gµB B h gµB B π!

=

R

=

=

vF 2×channel width −1 τcross Vspin

∝P

P

comes from k(110)

t

Monte Carlo Simulations

Bso(110)

10μm mean free path trajectory of 8000τcross, showing only 1st 40um 1um

zoom in to 50τcross 1um 0

10

20 -6 microns x10

30

40

k110 k110 0

20

40

τcross

60

80

100

all simulations due to S. Luescher

Monte Carlo Simulations

Bso(110)

k110 k110 0

20

40

Power Spectra

80

k110

-9

Power (a.u.)

τcross

60

10

k110

-11

10

-13

10

-15

10

0.0

0.1

0.2

0.3

0.4

0.5 0.0

0.1

frequency (a.u.)

0.2

0.3

0.4

0.5

100

Ballistic Spin Resonance for 110 spins Bin-plane

110

Spin voltage (nV)

1200

k110 B110

-9

10

-11

10

-13

10

-15

10

800

0.0

0.1

0.2

0.3

0.4

0.5

400 0 0

2

4

τs ∼ 1ns gµB B h gµB B π!

=

=

6

8

10

110

k110 B110

Bin-plane (T)

vF 2×channel width −1 τcross

0.0

0.1

0.2

0.3

0.4

frequency (a.u.)

0.5

Ballistic Spin Resonance for 110 spins Spin voltage (nV)

1200

Bin-plane

110

800 400

typical trajectory in channel

0 0

2

4

6

8

10

Bin-plane (T)

Bso(110)

τs ∼ 1ns gµB B h gµB B π!

=

=

Rspin =

vF 2×channel width −1 τcross Vspin ∝ P P inj det Iinj R

comes from k(110)

t

−x

Fermi velocity controls crossing time

Bin-plane

Spin voltage (nV)

1200 800 400

τs ∼ 1ns

0 0

2

4

6

8

10

Bin-plane (T)

gµB B h gµB B π!

vF = 2×channel width −1 = τcross Vspin Rspin ∝ P P Monte carlo= simulation inj det I inj -13

decreasing vF 0.6

a.u.

110

based on α=3x10 eVm, β=0 for SOI, mfp=10μm, R spin by thermal QPC inj 2L multiplied polarization (S. Luescher) −x

0.4

V

0.2 0.0

0

2

4

6

8

10

Bin-plane (T)

12

14

(x) ∼ I

Pinj Pde

λs V (x) ∝ λ e spin s Experiment

R Pinj Pde Vspin (x) ∼ Iinj 2L L−x

Effect of out-of-plane field B Power (a.u.)

-9

10

B =0

Power Spectra B =0

k110

k110

-11

10

-13

10

-15

10

(mT)

100

B

150

50

0.0

0.1

0.2

0.3

0.4

0.5

0.0

150

Simulation: Log-scale power spectrum of -16 -18 k110

100

0.1

0.2

0.3

0.4

0.5

Simulation: Log-scale power spectrum of k110

-16 -18 -20

-20

50

-22

-22

-24

-24

0

0 0

20

40

60

80

100

0

frequency (a.u.)

20

40

60

80

100

crossing time depends on B

Bin-plane

Spin voltage (nV)

1200

110

800 400

τs ∼ 1ns

0 0

2

4

6

8

10

Bin-plane (T) Experiment: Spin signal

150

nV 800

80

100

600 400

B

(mT)

100

gµB B π!

60

50

200

4

5

6

7

Bext(-110) (T)

8

0

vF = channel width Vspin Simulation: Log-scale Rspin = Iofinj ∝ Pinj Pde power spectrum k110

Vspin (x) ∼

-16

R -18 Iinj 2L Pinj P -20

Vspin (x) ∝ λs e

−x λs

-22 -24

R 0Vspin 20 (x) 40 ∼ I 60inj 2L 80 Pinj 100 P frequency (a.u.) L−x Vspin (x) ∝ λs sinh( λ

B adds periodic term to k110

Bin-plane

Spin voltage (nV)

1200

110

800 400

τs ∼ 1ns

0 0

2

4

6

8

10

Bin-plane (T)

150

Experiment 1.5 1.0

60

B

0.5

100

microvolts

(mT)

80

gµB B π!

50

0.0

40

0

0

2

4

6

Bext(110) (T)

8

10

vF = channel width Vspin R ∝ P P spin = ILog-scale inj de Simulation: inj

power spectrum of -16 R -18 Vk110 spin (x) ∼ Iinj 2L Pinj P

Vspin (x) ∝ λs e

−x λs

-20 -22 -24

R Iinj 2L 0 Vspin 20 (x) 40 ∼ 60 80 P100 inj P frequency (a.u.) L−x Vspin (x) ∝ λs sinh( λ

Conclusions

Inj

ce

r cto ete

ec to

n cta ndu

rC

Co

on du c

tan ce

D

•Electrical generation and detection of

2

3e

Spin voltage (µV)

pure spin currents in a 2D electron gas

•Dramatically different relaxation for

rotation for well-defined trajectories

•Negative polarization from unpolarized contacts?

/h

1e

2

1 e2

/h

2 e2

/h

3 e2

/h

/h

0.0

Inje

-100

-80

ctor

-80

Gat

-70

e V -60 olta ge -50 (mV )

-60

-40 -40

-20 0

ctor

Dete

V)

e (m

g Volta Gate

1200 Spin voltage (nV)

•Next steps: coherent resonant

2

0.5

-90

•Resonant enhancement of relaxation

2e

1.0

spin along 2 crystal axes

for spins in bouncing trajectory

/h

800 400 0 0

2

4

6

Bin-plane (T)

8

10