propagation measurements in florida - DESCANSO - NASA

Report 1 Downloads 127 Views
SPACE COMMUNICATIONS TECHNOLOGY CENTER (SCTC) ——-———



PFIOPAGATiON MEASUREMENTS IN FLORIDA ——-—- —— — HENRY HELMKEN FLCIRIDA ATLANTIC UNIVERSITY (FAU) & RUDY HENNING UNIVERSITY OF SOUTH FLORIDA (USF) June FLORIDA PROGRAM GOALS ●

Generate CDF’S for Sut)-tropical Region



Sub-tropical Fading Statistics



Radiometer Development



Diversity Gain Measurements



Sub-tropical Rain Models

996 ACTS PROPAGATION MEASUREMENTS NASA Propagation Terminal in Tampa, Florida University of South Florida (USF) Campus CCIR Rain Zone N, Global Rain Region E ACTS Elevation Angle: 52 Degrees ACTS Polarization: 43.6 Degrees 2 Year Collection Efficiency: 99.6?40 at 20 GHz 98.49’. at 27 GHz Diversity Experiments Extension of GTE Data Base COMSTAR Beacon Experiments 1978-79 SOFTWARE OUTPUT

ANALYSIS APPRC)ACH

Interpolate Calibration Intervals From 20 to 27 GHz or 27 to 20 GHz Use proximate average attenuation ratio

Data Matrices for 20 GHz and 27 GHz At O, 1, 2,...35 dB Fade Levels Jumber of Fades vs Fade Duration (>0, >1 . . . . >3600 see) otal Time at Fade Duration (>0, >1,...>3600 see) ‘ade Slope Occurrence at Fade Slope ( -1.15 . . ..+1.25 dB/see)

Fill in Small Gaps (e 60 seconds) Use average AFS value before and after gap

Cumulative Distribution Functions Fad CDF - at 0.1 and 1.0 dB resolution

Filter Sckrtillation via Averaging (30 sec running average)

Attenuation Ratio vs Fade Level

SUN SPARCstaticm 20 Input Calibrated Data Files (*.pv2) from ACTS edit

20/27 Scatter Plots for Selected Events Option to Generate ACA files ~et attenuation threshold from monthly average AFS

20 and 27 GHz Beacon vs Radiometer Scatter Plots

Generate Data Files for Subsequent Analysis

20 and 27 GHz Sky Brightness

113

I 100

Cummulatfie Distributions for One and Two {ear AFS ——

---- —

10: — 3 1: —

m—

-—- —

— —

c1 “c 0.1: —





+ 20 GHz: 93-94 + 20 GHz: 94-95 + 20 GHz: 93-95 + 27 GHz: 93-94 + 27 Gi-iz: 94-95 + 27 GHz: 93-95

>e

3 —

~~

-— — — 0.01- — i !0 21 22 23 24 28 29 3C o 1 2 3 4’5 - 6 ” 7 ” 8 ” 9 ” 1 0 ” 1 1 12”13’14 15 1( Attenuation (dB) I Figure 1. Cumulative distributions of Attenuation with respeot to Free Space (AFS) for 1993-1994,19941995 and 1993-1995. Data filtered through 30 seoond running average. Note exoess 20 GHz attenuation at 1 db fade level. I

1

Monthly 20 GHz CDF V6=on of AFS — 10C -9- Oemlbww

+ JaNMry 95 +

lC

F-95

* Jlm

+

S3

0.1

0.01

I

July95

-0- August’%

+ kch 95

4 **95

-0- Ma% -Q- w%

-0- od$ka 95 + Nwentw ’85

10: -

1, -

.1

,

Monthly 27 GHz CDF Variation of AFS 100*

.,

++kw4MaI

0,1: -

/ -t+tt-t+t+tttt+t---

14151617181920212? 23242526272829”3 Fado O@l (dB) Ficrure 2.1993-1994 monthly cumulative distributiok (CDF) at 20 GHz. Data filtered through 30 second running average.

114

0.01-~ (

3456’

?’13’14’15’16’1 7’W’I 9’20’21’22’23’24’2S’2 6’27’28’29’2

Figure 3, 1993-1994 monthly cumulative distributions (CDF) at 27 GHz. Data filtered through 30 second running average.

1

——— :3

.—

1993.199520 GHz Fade Exceedenw — Km]

1993” 199S 27 GHz Fade Exceedence

Im

m .. ..... .. .. ..... .. .. ... .. .. ..._. . .,.. .. ... .. .. .. .. .. .,,,. .,,,.

—.

lWI

; .,.,.,.. . . . . . . . . . . . ,, .,,,,,.,, ,,, ,,

. . . . . . . . .._ . . . . . :5< . . . . . . .. .. . .-. . . . . .+ . . . , ..,,.,..%

‘. . . ,,

: ‘A ‘“””” .*

lCO,

100

10, ——

10

.—— —— ..—

1-

1~ !i---r

—.— II

Figure 4. Number of fades at 20 GHz equaling cw exceeding abscissa. 30 second running average. Shown for fade depths from 2 db to 30 dB.

20 GHz Fade Duration Cond~onal Probability

Figure 5. Number of fades at 27 GHz equaling or exceeding abscissa. 30 second running average. Shown for fade depths from 2 db to 30 dB.



27 GHz Fade Duration Conditional Probability 1-

T hde D@I

o.1- -

0.o1- r 1

\

0.1-

—----

).01 10

100 Fade Dmttm (SC)

m

i

1

I

.— ti~~, , .- . . . . . . ,: ..-.% ‘, ?>,+. \ .....

-.——

.—

io

163

lbl

10

Fade Du%n(sec)

Figure 6. Normalized 20 GHz fade durations show in figure 4. Plot represents the conditional probability, P(TIA), of observing a fade of T seconds or longer given that a fade of depth A has occurred. .-— —

Fgure 7. Normalized 27 GHz fade durations shown in figure 5. Plot represents the conditional probability, p(TIA), of observing a fade of T seconds or longer given that a fade of depth A has occurred. — .

115

19