Protoilludane, illudane, illudalane, and norilludane sesquiterpenoids from Granulobasidium vellereum Tetsuo Kokubun*, Alison Scott-Brown, Geoffrey C. Kite, Monique S. J. Simmonds Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
* Tel: +44 208 332 5365 Fax: +44 208 332 5310
[email protected] List of Supporting Information
Granulolactone (1) Figure S1
Page 1
2
13
1D H spectrum (CDCl3, 400 MHz)
Figure S2
1D C spectrum (CDCl3, 100 MHz)
2
Figure S3
HSQC spectrum
3
Figure S4
COSY spectrum
4
Figure S5
HMBC spectrum
5
Granulodione (9) Figure S6
page 1D 1H spectrum (CDCl3, 400 MHz)
6
13
Figure S7
1D C spectrum (CDCl3, 100 MHz)
6
Figure S8
HSQC spectrum
7
Figure S9
COSY spectrum
8
Figure S10
HMBC spectrum
9
Figure S11
NOESY spectrum (tM 800 ms)
10
Figure S12 Estimation of UV absorption maxima for hexahydroindene-1,4-diones
Page 11
Figure S13 Mortality (%) of Tetranychnus urticae nymphs (mean ± sem)
Page 12
Figure S14 Mortality (%) of second-instar larvae of Heliothrips haemorrhoidalis (mean ± sem) Page 12 Table S1 NMR spectroscopic data of compounds 2–5 (400/100 MHz for 1H/13C, CDCl3)
Page 13
Table S2 NMR spectroscopic data of compounds 6–8 (400/100 MHz for 1H/13C, CDCl3)
Page 14
1
O O
Figure S1 1D 1H spectrum of granulolactone (1) (CDCl3, 400 MHz)
O O
Figure S2 1D 13C spectrum of granulolactone (1) (CDCl3, 100 MHz) 2
O O
Figure S3 HSQC spectrum of granulolactone (1) (CDCl3)
3
O O
Figure S4 COSY spectrum of granulolactone (1) (CDCl3)
4
O O
Figure S5 HMBC spectrum of granulolactone (1) (CDCl3)
5
O OH O
Figure S6 1D 1H spectrum of granulodione (9) (CDCl3, 400 MHz)
O OH O
Figure S7 1D 13C spectrum of granulodione (9) (CDCl3, 100 MHz) 6
O OH O
Figure S8 HSQC spectrum of granulodione (9) (CDCl3)
7
O OH O
Figure S9 COSY spectrum of granulodione (9) (CDCl3)
8
O OH O
Figure S10 HMBC spectrum of granulodione (9) (CDCl3)
9
O H
H H
H3C H
H H
H3C
H3C
OH H
H
O
Figure S11 NOESY spectrum of granulodione (9) (CDCl3, mixing time 800 ms)
10
1,4-diketo form O
O
1,7-diketo form
O
O
O
O
O
O
cyclohexenone
cyclopentenone
cyclohexenone
cyclopentenone
215 nm
202 nm
215 nm
202 nm
π-extention
+30
+30
-
-
α-alkyl substitution
+10
+10
+10
+10
β-alkyl substitution
-
-
+12
+12
γ-alkyl substitution
+17
+17
-
-
272 nm
259 nm
237 nm
224 nm
Base structure
Total estimated
Figure S12 Estimation of UV absorption maxima for hexahydroindenediones by Woodward rule. Values taken from Kemp, W. Organic Spectroscopy, second editon; Macmillan: Hampshire, 1987; p 201.
11
*
100
% mortality of mites
90 80 70 60 50 40 30 20 10 0 control
1
2
3
4
5
6
7
8
9
catechin
compound
Figure S13 Mortality (%) of Tetranychnus urticae nymphs (mean ± sem). Observed 2 h after introduction to vials containing 40 μg of test compounds as dry deposit (Mann-Whitney U-test, *: P < 0.05, n = 6).
1.2
Mortality (%)
* **
*
1 100
24 hrs 48 hrs 72 hrs
0.8 80 0.6 60 0.4 40 20 0.2 00
control
2
4
5
8
9
compound Figure S14 Mortality (%) of second-instar larvae of Heliothrips haemorrhoidalis (mean ± sem), exposed to 40 μg of test compounds impregnated into leaf sections (5 × 5 mm) of Rhododendron simsii. Monitored at 24 h intervals for three days (Mann-Whitney U-test, *: P < 0.05; **: P < 0.01; n = 6).
12
Table S1 NMR spectroscopic data of illudalane compounds 2–5 (400/100 MHz for 1H/13C, CDCl3, 30 °C, referenced to TMS). Radulactone (2)
Echinolactone A (3)
Position
δC, type
δH (J in Hz)
δC, type
1
44.3, CH2
2.81, d (16.2)
42.6, CH2
δH (J in Hz) 2.96, 2H, s
Alcyopterosin N (4)
Riparol B (5)
δC, type
δH (J in Hz)
δC, type
42.4, CH2
2.86, 2H, br. s.
47.4, CH2
δH (J in Hz) 2.67, 2H, s
2.63, d (16.2) 2
147.5, C
155.6, C
149.6, C
143.4, C
3
131.3, C
132.9, C
134.5, C
133.1, C
4
66.6, CH2
4.49, 2H, t (6.1)
66.2, CH2
4.54, 2H, t (6.0)
61.5, CH2
3.81, 2H, t (7.3)
61.6, CH2
3.80, t (6.1)
5
25.3, CH2
2.96, 2H, t (6.1)
25.9, CH2
3.08, 2H, t (6.0)
33.4, CH2
3.06, 2H, t (7.4)
31.8, CH2
2.98, t (6.1)
6
138.2, C
143.8, C
142.4, C
133.5, C
7
124.2, C
125.1, C
136.9, C
139.7, C
8
124.3, CH
9
143.8, C
10
83.0, CH
11
44.2, C
12
21.5, CH3
1.06, 3H, s
25.3, CH3
1.26, 3H, s
25.5, CH3
1.23, 3H, s
29.3, CH3
1.15, 3H, s
13
26.8, CH3
1.18, 3H, s
25.3, CH3
1.26, 3H, s
25.5, CH3
1.23, 3H, s
29.3, CH3
1.15, 3H, s
14
165.9, C
20.5, CH3
2.41, 3H, s
64.2, CH2
4.57, 2H, s
15
15.0, CH3
14.9, CH3
2.32, 3H, s
16.1, CH3
2.19, 3H, s
8.00, s
4.70, s
125.5, CH
8.43, s
7.45, s
124.1, CH
134.5, C
133.4, C
141.5, C
209.9, C
211.6, C
48.0, CH2
45.6, C
45.5, C
39.4, C
164.8, C 2.19, 3H, s
123.2, CH
14.2, CH3
2.30, 3H, s
6.98, s
2.71, 2H, s
13
Table S2 NMR spectroscopic data of compounds 6–8 (400/100 MHz for 1H/13C, CDCl3, 30 °C, referenced to TMS). Radulone B (6)
Coprinolone ketodiol (7)
Position
δC, type
δH (J in Hz)
δC, type
1
47.2, CH2
2.12, d (14.6)
81.0, CH
δH (J in Hz) 4.75, s
Illudadiene B (8) δC, type 35.4, CH2
1.72, d (14.6) 88.3, C
162.2, C
54.2, CH
3
51.7, C
40.5, C
72.1, C
4
24.8, CH2
30.8, CH2
1.71, m 5
28.1, CH2
3.03, m
1.95, m
9.3, CH2
1.84, m 19.4, CH2
2.74, m
1.86, m
6.3, CH2
1.54, m 47.9, CH
2.59, m
32.7, C
7
126.3, C
39.8, CH
2.57, m
142.7, C
8
186.3, C
199.8, C
119.6, CH
9
141.0, C
135.6, C
143.7, C
10
150.4, C
2.38, dd (16.2, 0.8)
0.98, m
0.92, m 0.81, m
168.8, C
37.1, CH2
3.05, dt-like (2.3, 8.7)
0.51, m
6
6.59, s
2.00, dd (13.1, 2.3) 1.53, dd (13.1, 8.1)
2
2.69, m
δH (J in Hz)
127.2, CH
6.02, br. s.
5.13, d (2.4)
2.27, dd (16.4, 1.3) 11
44.7, C
46.9, C
50.8, C
12
29.9, CH3
1.25, 3H, s
17.3, CH3
1.12, 3H, s
24.4, CH3
1.13, 3H, s
13
28.3, CH3
1.17, 3H, s
70.0, CH2
3.56, d (10.4)
70.8, CH2
3.42, 2H, s
3.48, d (10.3) 14
9.5, CH3
1.68, 3H, s
10.4, CH3
1.00, 3H, d (6.6)
19.3, CH3
1.53, 3H, s
15
23.2, CH3
1.29, 3H, s
25.2, CH3
1.44, 3H, s
19.8, CH3
1.05, 3H, s
14