Reducing Time it Takes to Investigate Incidents ... - Zift Solutions

Report 2 Downloads 65 Views
Value  Proposition:  Identify,  diagnose,  and  mitigate  complex  threats  in  moments,  as  opposed  to  days,  weeks,  or  months.  

Reducing Time it Takes to Investigate Incidents Value Proposition Case Studies

• Ability  to  quickly  answer  “what  if”  questions  associated  with  possible   attacks  via  analyst-­‐driven  GUI,  export  actionable  clickstream  data,   and  streamline  incident  detection/response  processes.   • 75%  reduction  in  level  of  effort  to  diagnose  a  web-­‐based  incident  vs.   SIEM  tool,  from  2  minutes  per  incident  to  30  seconds  per  incident.   • Identified  layer  7  DDoS  prior  to  any  other  InfoSec  tools  in  use.    Saved   ~$100,000/hour  by  blocking  bad  actors  prior  to  take  down.   • Persistent  fraud  pattern  required  manual  review  of  20,000+  cases  per   year  prior  to  WTD.    WTD  detects  the  fraud  pattern  within  the  first  3   clicks  of  a  web  session  with  97%  accuracy.    Automated  actions   against  this  fraud  trend  prevented  $300,000+  in  losses  and  removed   20,000+  cases  per  year  from  manual  review  caseload.  

Proactively Identifying Anomalous Behaviors • • •





Determine  if  strange  traffic  patterns  are  being  used  to  hide  real  fraud.   Automatically  distinguish  normal  behavior  from  fraudster  activity.   Identified  previously  unknown  aggregators  and  misconfigured  vendor   applications,  allowing  rigorous  analysis  of  their  data  protection   standards,  identification  of  risky  applications,  and  blocking  access   when  necessary.   Identified  large-­‐scale,  high-­‐speed  password  guessing  attack  (15K   login  attempts  <  5  minutes,  single  IP).  Password  guessing  attack   mitigation  saves  the  organization  ~$48,800  per  incident  or  $1.2MM   annually.   Delivered  $1MM+  in  2013  fraud  loss  reductions  to  a  leading  US  bank   in  mitigating  business  logic  abuse  and  wire  fraud.  

Customer  Use  Cases:  WTD  delivers  visibility  and  context  needed  to  distinguish  –  in  real  time  -­‐  legitimate  web  and  mobile  customers  from  fraudsters.  

Customer Challenge

Visibility Impact of Web Threat Detection

Account registration fraud

Ÿ Web  &  Mobile:  Required  insight  into  and  detection  of  fraudulent   registration  patterns  across  Web  &  Mobile  channels   Ÿ Compromised  credentials:  Believed  fabricated  credentials  were  being   used  to  setup  accounts  and  open  credit  using  someone  else’s  ID.   Ÿ Lacked  real-­‐time  visibility  to  validate  these  concerns  and  disrupt   fraudulent  activities  prior  to  successful  compromise.  

Ÿ Discovered  bulk  registration  +  online  enrollment  fraud  patterns   – High  volume/velocity  registrations  &  enrollments  from  single  IP.   – Thousands  per  day  over  sustained  period  of  several  weeks.   – Triggered  real-­‐time  rules  within  first  hour  of  deployment  alerting   analysts  to  excessive  clicks  through  registration/enrollment  pages.   – Routed  alerts  to  load  balancer  for  automated  blocking.  

ACH wire transfer fraud

• ACH  manipulation:  Fraud  and  losses  associated  with  fraudulent  ACH   Ÿ Provided  real-­‐time  visibility:  exact  play-­‐by-­‐play  of  fraudster  activities   transfers  which  circumvented  ACH  Wire  Creation  MFA  policies   revealed  attack  patterns  customer  had  been  previously  unaware  of.   • ACH  transfers  to  fraudulent  accounts:  Loss  was  occurring  because  it   -­‐ ACH  manipulation:  WTD  discovered  previously  unknown  pattern  of   was  taking  too  long  to  identify  ACH  transfers  to  known  fraudulent   business  logic  abuse,  in  which  wire  creation  fraud  controls  were  not   accounts.   applied  to  wire-­‐edit  logic.  For  instance,  fraudster  would  create  a   • Despite  new  SOC  environment  and  technologies,  lacked  real-­‐time   $95.25  wire,  and  later  modify  10x  to  $9,525,  circumventing  security   visibility,  alerting,  and  robust  threat  detection  for  online  and  mobile   controls.     channels.   -­‐ Transfers  to  fraudulent  accounts:  Utilized  WTD’s  External  Data   Source  feature  to  load  “known  fraud  accounts”  watch  lists.  Real-­‐ time  alerts  for  activity  against  these  accounts  allowed  enough  time   to  initiate  a  stop  on  the  transfer  and  mitigate  the  pending  loss.  

Mobile account takeover

• Mobile  Visibility:  Had  no  visibility  into  mobile  application  traffic   patterns.   • Concerns  that  fraudsters  were  shifting  account  takeover   strateg67ies  to  the  mobile  channel.  

• Discovered  persistent,  successful  password  guessing  attacks  occurring   unchecked  against  mobile  channel.   -­‐ Deployment  included  both  mobile  and  web  traffic.   -­‐ Out  of  the  box  rules  picked  up  fraudster  behaviors  within  first  hour   of  proof  of  concept  deployment.  

Web  Threat  Detection  –  Value  Across  the  Enterprise     Systems  Integration  Opportunities  

End  User   Communities   User Communities Information   Security  

Fraud  

Malware   Analysts  

Authentication  

 

Identify  ways  to  increase  the  value  and  effectiveness  of  existing/future  investments  

• “One  stop  shop”  for  web  fraud  data   • Fraud/phishing  patterns   • DDoS,  brute  force,  SQL  injection   attack  visibility  

•Updated  config  gives  fraud  team   visibility  into  raw  transactional  data   •Coverage  as  fraud  goes  to  mobile   channel  

•Analyze  behavioral  aspects  of  live   malware   •Identify  “early  stage”  malware   activity  

•Combine  risk  and  behavior-­‐based   policies   •Additional  source  of  risk  data  

Web  Threat  Detection  

Real-­‐Time  Clickstream  Analysis  

Integration  Layer  

Action  Server  (Push)  /  Data  Stream  (Pull)  

SIEM  

ArcSight,  Splunk,  etc.    

• Reduce  time  to  correlate   web-­‐based  threats  by  up   to  75%.       • Augment  logs  data  with   user  clickstream  analysis   and  transaction  data.     • Provide  ability  to  drill   into  WTD  from  SIEM   alerts  for  deeper   analysis.      

Big  Data  

User  Authentication  

Hadoop,  Security  Analytics,  etc.  

RSA  Adaptive  Authentication    

• Standards-­‐based   messaging  &  APIs  reduce   data  integration  efforts.     • Allow  analysts  to  quickly   pivot  from  web  threat  to   network  analysis.  For   instance,  detect   shellshock  attempts   against  web  servers  and   pivot  into  SA  to  analyze   impact  of  the  exploit   inside  the  network.     • Automated  threat  scores   drive  down  analysts’  time   to  diagnose  web-­‐based   threats.    

• Augment  risk-­‐based   authentication  policies   with  behavior-­‐derived   custom  facts.     • Reduce  rate  of  false-­‐ negatives  (i.e.  failed   logins  data  fed  into   Adaptive  Authentication).     • Better  alignment  with   FFIEC  anomaly  detection   guidelines  stating  that   fraudster-­‐driven  activities   are  “anomalous  when   compared  with…   established  patterns  of   behavior”.  

 

Defending  the  Website  Cyber  Kill  Chain     Reconnaissance

Weaponization

 What  it  is:  Research,  identification,  

 

Delivery

Exploitation

Command & Control

Exfiltration

and  selection  of  targets.  

What  it  is:  Creating  and  transmitting  the  deliverable   payload  (exploit  +  Trojan),  to  the  target  environment.    

What  it  is:  Executing  attacker’s  code  following  delivery  to   exploit  application,  OS  or  users  vulnerabilities.  

How  WTD  Helps   •Early  detection  of  initial  pre-­‐ authenticated  probing  and  website   enumeration.   •Automated  behavior  scoring  detects   anomalously  behaving  IP  addresses,   activity  originating  from  high  risk   geo-­‐locations,  as  well  as  known   malicious  hosts  and  referrers.    

How  WTD  Helps   •Websites  themselves  are  one  of  the  most  common   weaponized  payload  delivery  vectors;  i.e.  exploiting  a   server  vulnerability  to  embed  a  watering  hole  attack   into  a  web  site.     •WTD  can  monitor  POST  arguments  for  suspicious   paramaters  and  injection  points.   •WTD  can  monitor  suspicious  referrers  indicating   connections  originating  from  attacker  websites.    

How  WTD  Helps   •WTD  can  help  provide  early  warning  before  new  threats  are   even  discovered.  Visibility  of  web  sessions  provides  zero  day   insights.   •Visibility  into  all  HTTP/HTTPS  POST/GET  Args,  headers,  IP,  geo-­‐ location,  cookies,  STYX,  etc.  provides  visibility  into  parameters   being  passed.    Quickly  search  entire  data  store  for  occurrances   of  malware  signatures,  toolkits,  risky  args,  unexpected   parameters.       •Bad  actors  can  be  anything,  not  just  IP,  but  page  headers,  user