Response of Salt-Marshes and Tidal p Freshwater Marshes in the ...

Report 4 Downloads 44 Views
Response p of Salt-Marshes and Tidal Freshwater Marshes in the Delaware River Estuary to Sea-Level Sea Level Rise and Salt-Water Intrusion Nathaniel B. Weston Department of Geography and the Environment, Villanova University Delaware Estuary Science and Environmental Summit February 2011

Coastal Marshes and Sea Level Extensive Coastal Marshes Formed in last ~4000 years

Sea level rise was too rapid (~10 mm yr-1) for marsh formation

Intergovernmental Panel on Climate Change Fourth Assessment Report (2007)

How will tidal marshes in the Delaware River Estuary respond to current and future rates of sea-level rise?

Sea-Level Rise & Marsh Accretion Watershed I Inputs t

CO2 Primary

Production

Marsh Accretion Inorganic Sediment

Organic O i Matter

MSL

Tidal Freshwater M Marshes h PA

De

law

e Riv are

r

NJ

Raccoon MD

Salt Marshes Delaware Bay DE

Atlantic Ocean

Salt-Water Intrusion Changing Precipitation & Evapotranspiration i i

River Rising Sea Level

Ocean

TFM Plant Response to Salt-water Salt water Intrusion Freshwater tidal marsh plant (Nuphar luteum) luteum)…

…dies when transplanted to a brackish marsh.

Salt-marsh cordgrass (Spartina alterniflora) grows the following year. year

Shift to Salt Marsh? Watershed I Inputs t

CO2 Primary

Production

Marsh Accretion Inorganic Sediment

Organic O i Matter

MSL

Adjacent d Marsh h Mesocosms Average Maximum Daily Flooding (cm)

TFM Mesocosms

Sediment Traps

50 60 70 80 90 100 • Plant Pl S Species i C Composition i i & Bi Biomass • Trace GHG (CH4 & N2O) Flux • Soil Biogeochemistry & Microbial Rates • Rates R off Sediment S di D Deposition ii

Delaware River Transplant Experiment

Delaware Estuary Salinity y y 16

3000

14

River Discharge

Stow (salt‐marsh) Stow (salt marsh)

2 00 2500

2000 10 8

1500

Salem (brackish)

6 1000

Organs 4

500

Rancocas (TFM) Raccoon (TFM)

2 0

0 Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

River Disscharge (m3 s-1)

Conductivity (mS cm m-1)

12

Plant Species Response to Flooding Depth 90 Zizania aquatica (brackish)

80 70

Mixed TFM

Bio omass (g)

60

Spartina alterniflora (salt)

50 40 30

Peltandra virginica (fresh)

20 10

Nuphar lutea (fresh)

0 40

50

60

70

80

90

Average Daily  Maximum  Flooding  Depth (cm)

100

110

120

Total Plant Biomass Response to Flooding Depth 90

Rancocas  (TFM) 80

Salem (Brackish)

70

Bio omass (g)

60 50

Stow (Brackish‐Salt)

40

Raccoon (Lower TFM)

30 20 10 0 40

50

60

70

80

g y g p ( ) Average Daily Maximum Flooding Depth (cm)

90

100

110

Total Plant Biomass Response to Flooding Depth 90

Rancocas  (TFM) 80 70

Bio omass (g)

60 50

Raccoon Transplant 

40

Raccoon (Lower TFM)

30 20 10 0 40

50

60

70

80

g y g p ( ) Average Daily Maximum Flooding Depth (cm)

90

100

110

14 1.4

3000 Rancocas Raccoon

1.2

2500

Delaware River Discharge

2000 0.8 1500 0.6 1000 04 0.4

500

0.2

0

0 Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

River Disccharge (m 3 s-1)

Conductivity (mS cm -11)

1

Total Plant Biomass Response to Flooding Depth 90

Rancocas  (TFM) 80

Salem (Brackish)

70

Bio omass (g)

60 50 40 30 20

Salem Transplant

10 0 40

50

60

70

80

g y g p ( ) Average Daily Maximum Flooding Depth (cm)

90

100

110

Total Plant Biomass Response to Flooding Depth 90

Rancocas  (TFM) 80 70

Bio omass (g)

60 50

Stow (Brackish‐Salt)

40 30 20 10

S Stow T Transplant l 0 40

50

60

70

80

g y g p ( ) Average Daily Maximum Flooding Depth (cm)

90

100

110

Unstable Marsh / Open Water

Stable Marsh

Relative e Plant B Biomass and M Marsh Acc cretion

Marsh Accretion

Sea Level Rise

Marsh Platform

Plant Biomass

Salt-tolerant Plant Colonization

Marsh Accretion

20

30

40

50

60

70

80

Average Daily Maximum Flooding Depth (cm)

90

100

*Patrick Costello *Amanda Foskett Oliva Gibb Anthony Geneva Paul Kiry C Chris McLaughlin Avni Malhotra *Neil Mehta *Justin Meschter Stephen Mowbray

*Michael Patson *Melanie Pingoy *Tatjana j Prša James Quinn *Daniel Russo *Mariozza Mariozza Santini Kimberli Scott Roger Thomas *John John Ufferfilge Melanie Vile *Paul Weibel (* - Undergraduate Student)

Environmental Protection Agency, STAR Program National Science Foundation Villanova University

80

CO2

70

Salt‐water Amended

Salt-water Amended

CO2 Flux ((mmol m-2 d-1)

60

50

40

30

Freshwater

20

Freshwater

10

0 -30

0

30

60

90

120

150

180

210

240

270

300

330

360

390

Time (days y) 200

CH4

180

CH4 Fluux (mmol m-2 d-1)

160 140 120 100 80 60 40 20 0 -20 -30

0

30

60

90

120

150

180

210

Time (days)

240

270

300

330

360

390

Soil Organic Carbon -2

Organiic Carbo on (mol m )

660

Freshwater Salt Water Intrusion

640 620 600 580 560 540 520 -50

0

50

100

150

200

Days

250

300

350

400

Impact of Coupled Sea‐Level Rise and  Salt‐water Intrusion 140 120

Methane Em mission (mmo ol m‐2 hr‐1)

Stow TFM Transplant l 100 80 60 40 20

Stow salt‐marsh

Raccoon TFM Transplant 0 Raccoon TFM ‐20 40

50

60

70

80

Average Daily Maximum Flooding Depth (cm)

90

100

110

Loss of TFM? Watershed p Inputs

CO2 Primary

CO2 & CH4

Production

MSL Permanent Submergence g

Inorganic Sediment O Organic i Matter

Microbial Respiration

CO2 & CH4