Sea Level High Altitude

Report 2 Downloads 96 Views
THE  EFFECT  OF  HIGH  ALTITUDE  ON  CELL  PROLIFERATION,  APOPTOSIS  AND  FUSION  IN  THE  HUMAN  PLACENTA  

 Camilla  E.  St.  A.  Jackson,  Tereza  Cindrova-­‐Davies,  Graham  J.  Burton          Centre  for  Trophoblast  Research,  Department  of  Physiology,  Development  and  Neuroscience,  University  of  Cambridge  

1×107

0

Sea Level High Altitude

10

5

0

0.0

There  were  no  significant  differences  in:   •  placental  weight  (p=0.405);   •  placental  volume  (p=0.405);   •  birthweight  (p=0.417)  or   •  placental  index  (p=0.191)     at  sea  level  and  high  al(tude.  

ig

h

A

Se a

lti

tu

de

Le ve l

tu lti A h

H

H

de tu lti A

A h H Altitude

0.0

h

lti

tu

de

Le ve l

0.0

5.0×1010

ig

5.0×109

1.0×1011

H

1.0×1010

Sea Level High Altitude

Le ve l

1.5×1010

1.5×1011

Se a

Sea Level High Altitude

Total number of STB in placenta

2.0×1010

Altitude

CONCLUSIONS  

•  High-­‐al(tude  (3  100m)  does  not  cause  a  significant  difference  in  the  propor(ons  of  CTB  undergoing   prolifera(on,  apoptosis  or  fusion  in  normal  term  placentae  from  non-­‐na(ve  women.       •  Prolifera(on  and  apoptosis  occur  in  CTB,  not  STB.       •  Fusion  of  CTB  to  STB  is  a  rare  event  in  term  placentae.   •  Previous  studies  have  shown  a  significant  decrease  in  placental  weight  at  high  al(tude6.    CTB   prolifera(on  increases  during  pregnancy  but  reaches  a  plateau  at  term7.    Changes  in  prolifera(on,   apoptosis  and  fusion  may  occur  earlier  in  gesta(on  and  may  not  be  obvious  at  term.    

lti

tu

de

5.0×107

Graph of the Total number of STB in the placenta at sea level and high altitude

ig

ig

15

1.0×108

Graph of the Total number of CTB in the placenta at sea level and high altitude

Altitude

Graph of the ratio of STB to CTB at sea level and high altitude

1.5×108

Altitude

H

Altitude

Sea Level High Altitude

Altitude

Se a

A

A h ig H

Total number of CTB in placenta

-0.02

Se a

lti

tu

de

Le ve l

-0.02

0.00

de

0.00

0.02

tu

0.02

Sea Level High Altitude

h

0.04

0.04

lti

Sea Level High Altitude

Graph showing the proportion of CTB staining positively with a-HERVFRD-1 at sea level and high altitude

Le ve l

0.06

Proportion of +ve CTB nuclei (a-HERVFRD-1)

Altitude

Graph showing the proportion of CTB staining positively with Cleaved Caspase-3 at sea level and high altitude

2.0×108

ig

ig H

H Altitude

Graph of mean numerical density of STB (cm-3) at sea level and high altitude

de

Le ve l

h

A

Se a

lti ig

h

A

Se a

2×107

Mean Numerical Density STB (cm-3)

0.0

tu

de

Le ve l

-0.1

Sea Level High Altitude

Se a

0.0

0.2

Mean Numerical Density CTB (cm-3)

0.1

0.4

3×107

de

0.2

0.6

Graph of mean numerical density of CTB (cm-3) at sea level and high altitude

tu

0.3

Sea Level High Altitude

!

•   There  were  no  significant  differences  in:   •  mean  numerical  densi(es  of  CTB  (p=0.873)  or  STB  (p=0.683);     •  total  number  of  nuclei  (CTB  p=0.873;  STB  p=0.524);     •  STB:CTB  (p=0.542)  at  sea  level  and  high  al(tude.  

lti

High Altitude

0.8

E  

!

Graph showing the proportion of CTB staining positively with PCNA at sea level and high altitude

Le ve l

0.4

Proportion of +ve CTB nuclei (PCNA)

Sea Level

A h ig H

Figure  1:  Diagram  of  unbiased  coun(ng  frame  for   ‘physical  disector’.    Solid  lines  =  forbidden  to   count,  DoUed  lines  =  allowed  to  count.    Cell  1  is   not  counted  because  it  is  on  the  forbidden  line.     Cell  2  is  not  counted  since  it  is  present  in  both.   The  3rd  cell  (green)  is  counted  because  it  is  in  the   coun(ng  frame  and  only  present  in  the  reference   sec(on.  (Fogarty  et  al.,  20115)  

Graph showing the proportion of CTB staining positively with Ki67 at sea level and high altitude

0.5

D  

!

• There  were  no  significant  differences  between  the  propor(ons  of  CTB  undergoing:   • prolifera(on  (Ki67  p=0.683;  PCNA  p=0.683);   • apoptosis  (CCasp-­‐3  p=0.905)  or;     • fusion  (a-­‐HERV-­‐FRD-­‐1  p=0.905)  at  sea  level  and  high  al(tude.   • No  STB  stained  posi(vely  for  Ki67  or  Cleaved  Caspase-­‐3.  

Se a

•  Ten  healthy,  term  placentae  were  collected  from  uncomplicated  pregnancies  at  sea  level   (London  and  Cambridge)  and  high  al(tude  (Leadville,  Colorado;  3  100m)  with  informed  wriUen   maternal  consent.   •  Placental  samples  were  preserved  in  paraffin  wax.   •  The  experimenter  was  blinded  to  the  placental  origins  throughout  un(l  decoding  for  sta(s(cal   analysis.   •  Sequen(al  7µm  sec(ons  from  10  placentae  were  stained  using  immunohistochemistry  for   markers  of:   •  Prolifera(on  (Ki67;  PCNA)   •  Apoptosis  (Cleaved  Caspase-­‐3)   •  Fusion  (a-­‐HERV-­‐FRD-­‐1)   •  The  numbers  of  CTB  and  STB  nuclei  staining  posi(vely  and  nega(vely  for  each  an(body  in  100   coun(ng  frames  (60μm  X  60μm  X  7μm)  were  counted  for  each  placental  sample  manually  using   the  unbiased  physical  disector  technique  (see  Fig.  1)  (4  000  frames  in  total).   •  All  sta(s(cal  analysis  was  completed  using  the  Mann-­‐Whitney  U  test  on  GraphPad  Prism  6   sodware  (GraphPad  Sodware  Inc.,  USA).  

!

Le ve l

METHODS  

C  

B  

Se a

 To  inves(gate  the  effect  of  high  al(tude  on  trophoblas(c  cell:   • Prolifera(on   • Apoptosis   • Fusion   for  the  first  (me  in  normal  term  human  placentae  from  non-­‐na(ve  women.    

A  

Proportion of +ve CTB nuclei (Ki67)

AIM  

Figures  2  A  –  E:    Sea  level  and  high  al(tude  placental  samples  stained  with:  2A  Ki67;  2B  PCNA;  2C  Cleaved  Caspase  3;  2D  a-­‐HERV-­‐FRD-­‐1;  and  2E  Nega(ve  Control    

Proportion of +ve CTB nuclei (CCasp3)

•  High  al(tude  pregnancy  is  a  natural  model  for  the  effects  of  chronic  mild  hypobaric  hypoxia  on   placental  and  fetal  growth.       •  Hypoxia  is  an  important  cause  of  complica(ons  of  pregnancy  e.g.  intrauterine  growth   restric(on1.       •  Human  birthweight  declines  by  102g/1000m  ascended  independent  of  other  IUGR  risk  factors2.   •  Hypoxia  increases  cytotrophoblast  (CTB)  prolifera(on  and  apoptosis  and  decreases  fusion  in   vitro.    However,  controversy  exists  over  its  effects  in  vivo  3,  4.   •  High  al(tude  causes  mild  endoplasmic  re(culum  stress  and  so  might  be  expected  to  reduce   CTB  prolifera(on3.   •  However,  increased  CTB  numbers  have  been  reported  in  high  al(tude  placentae4.    This  may  be   explained  by  increased  CTB  prolifera(on,  decreased  apoptosis  or  decreased  fusion.       •  For  the  first  (me,  this  study  inves(gated  the  effect  of  high  al(tude  on  cell  prolifera(on,   apoptosis  and  fusion  in  normal  term  placentae  from  non-­‐na(ve  women  living  at  sea  level   (London  and  Cambridge)  and  high  al(tude  (Leadville,  Colorado;  3  100m).  

RESULTS  

STB:CTB

  INTRODUCTION  

Altitude

REFERENCES   1.    Zamudio,  S.  The  placenta  at  high  al(tude.  High  Alt.  Med.  Biol.  4,  171–191  (2003).   2.    Moore,  L.G.,  Brodeur,  P.,  Chumbe,  O.,  D’Brot,  J.,  Hofmeister,  S.,  and  Monge,  C.  (1986).  Maternal  hypoxic  ven(latory  response,  ven(la(on,  and  infant  birth  weight  at  4,300  m.  J.  Appl.  Physiol.  Bethesda  Md  1985  60,  1401–1406.   3.    Yung,  H.  W.,Cox,  M.,Tissot  van  Patot,  M.  &  Burton,  G.  J.  Evidence  of  endoplasmic  re(culum  stress  and  protein  synthesis  inhibi(on  in  the  placenta  of  non-­‐na(ve  women  at  high  al(tude.Faseb  J.  Off.  Publ.  Fed.  Am.  Soc.  Exp.  Biol.  26,1970–1981  (2012).   4.    Ali,  K.  Z.  Stereological  study  of  the  effect  of  al(tude  on  the  trophoblast  cell  popula(ons  of  human  term  placental  villi.  placenta  18,  447–450  (1997).   5.   Fogarty,  N.M.E.,  Mayhew,  T.M.,  Ferguson-­‐Smith,  A.C.,  and  Burton,  G.J.  (2011).  A  quan(ta(ve  analysis  of  transcrip(onally  ac(ve  syncy(otrophoblast  nuclei  across  human  gesta(on.  J.  Anat.  219,  601–610.   6.    Van  Patot,  M.C.T.,  Valdez,  M.,  Becky,  V.,  Cindrova-­‐Davies,  T.,  Johns,  J.,  Zwerdling,  L.,  Jauniaux,  E.,  and  Burton,  G.J.  (2009).  Impact  of  pregnancy  at  high  al(tude  on  placental  morphology  in  non-­‐na(ve  women  with  and  without  preeclampsia.  Placenta  30,  523–528.   7.    Simpson,  R.A.,  Mayhew,  T.M.,  and  Barnes,  P.R.  (1992).  From  13  weeks  to  term,  the  trophoblast  of  human  placenta  grows  by  the  con(nuous  recruitment  of  new  prolifera(ve  units:  a  study  of  nuclear  number  using  the  disector.  Placenta  13,  501–512.