slides - Microsystems Technology Laboratories - MIT

Report 4 Downloads 94 Views
A CMOS-Compatible Fabrication Process for Scaled Self-Aligned InGaAs MOSFETs Jianqiang Lin Dimitri Antoniadis and Jesús del Alamo Microsystems Technology Laboratories, MIT CS MANTECH, May 18-21, 2015 Acknowledgements: DTRA NSF E3S STC MIT SMART program 1

Motivation for III-V CMOS • Superior electron transport properties for III-Vs Vinj: source injection velocity

• III-V’s: promising to extend Moore’s Law • Focus of this talk: InGaAs MOSFET fabrication technology 4

Self-aligned recessed-gate QW-MOSFET HEMTs

Considerations for III-V MOSFETs • Gate insulator – thin with low leakage, low Dit

• High-level self-alignment 2 m [Kim IEDM 2011]

– ohmic metal, access region, gate

• CMOS compatibility – free of wet-etch, lift-off and Au

Proposed MOSFET structure:

3

Process overview Mo/W ohmic contact

CF4, SF6 anisotropic RIE CF4+O2 isotropic RIE

Resist SiO2 W/Mo n+ cap InP InGaAs/InAs -Si InAlAs

[Lin, APEX 2012] III-V recess

Gate stack

[Lin, IEDM 2013] [Waldron, IEDM 2007] Via and pad Via

Mo HfO2

[Lin, IEDM 2012-2014]

4

Details of contact and III-V recess processes Mo/W ohmic contact

CF4, SF6 anisotropic RIE CF4+O2 isotropic RIE

Resist SiO2 W/Mo n+ cap InP InGaAs/InAs -Si InAlAs

[Lin, APEX 2012] III-V recess

Gate stack

[Lin, IEDM 2013] [Waldron, IEDM 2007] Via and pad Via

Mo HfO2

[Lin, IEDM 2012-2014]

5

W barrier for undercut immunity Goal: to reduce device footprint and gate pitch size Oxidized Mo SiO2 Mo

[Lin, IEDM 2012]

(a)

20 nm [Lin, IEDM 2012]

[Lin, IEDM 2013]

6

Problems with wet etch gate recess

• Isotropic wet etch → large lateral extent – Large footprint – Ungated and uncapped access regions → access resistance ↑ 7

New III-V recess technology: Precise channel thickness (tc) control Cl2 anisotropic RIE

• Anisotropic

SiO2 W/Mo n+ InGaAs/InP

InP

InGaAs/InAs InAlAs

-Si

8

III-V dry etch: surface roughness Selected chemistry Cl2:N2 Key parameters:

As-grown

Selected recipe

 Bias  Pressure  Gas ratio (Cl2:N2)  Gas chemistry

Not selected recipes

9 [Zhao EDL 2014]

III-V dry etch: trenching BCl3-chemistry

[Zhao IEDM 2014]

Cl2:N2-chemistry

Low bias

High bias

10

New III-V recess technology: Precise channel thickness (tc) control Cl2 anisotropic RIE

• Anisotropic • Accurate depth control

SiO2 W/Mo n+ InGaAs/InP

InP

InGaAs/InAs InAlAs

-Si

1 nm/cyc

Digital Etch (DE)

[Lin, EDL 2014]

O2 Plasma H2SO4

11

New III-V recess technology: Precise channel thickness (tc) control Cl2 anisotropic RIE SiO2 W/Mo n+ InGaAs/InP

InP

InGaAs/InAs InAlAs

• Anisotropic • Accurate depth control • Accurate and fast calibration

-Si

1 nm/cyc

Digital Etch (DE)

[Lin, EDL 2014]

O2 Plasma H2SO4

12

Precise channel thickness (tc) control 1 nm depth control

tc=

tc=

 ON-state: ION, gm, RSD  OFF-state: S, DIBL, Vt roll-off [Lin, TED submitted]

800

DIBL (mV/V)

Device scaling study

tc=12 nm

600 400 200

3 nm

0 0.01

0.1

1 Lg(m)

10

13

Typical long-channel characteristics -3

10

-4

10 Id (A/m)

-5

10

-6

10

83 mV/dec

-7

10

-8

Lg=120 nm

10

Vds=0.05 and 0.5 V

-9

10

-0.2

0.0 0.2 Vgs (V)

0.4

• Steep S at low Vds → Low Dit • Jg< 10-2 A/cm2 at EOT~0.5 nm → gate leakage suppression (typical HEMT: Jg>100 A/cm2)

14

Scalability and performance Scalability

Performance

[Lin, IEDM 2014]

Id (mA/m)

3.1 mS/m 1.0 Lg=20 nm Vgs-Vt= 0.5 V 0.8 Ron=224 m 0.4 V 0.6 0.4 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 Vds (V)

MIT MOSFETs Ref: del Alamo ESSDERC 2013 (updated)

15

Conclusions • Scalable self-aligned InGaAs MOSFETs – CMOS manufacturability, performance, scalability

• Bilayer ohmic contact for footprint scaling • III-V recess – III-V dry etch: smooth surface and no trenching – Digital etch: accurate depth control

• InGaAs MOSFET performance analysis – – – –

Steep subthreshold swing: low Dit Gate leakage suppression Record transconductance achieved Working Lg=20 nm InGaAs MOSFETs

16