Spherical Coordiantes

Report 1 Downloads 74 Views
Multiple Integrals

Advanced Calculus Lecture 4 Dr. Lahcen Laayouni Department of Mathematics and Statistics McGill University

January 16, 2007

Dr. Lahcen Laayouni

Advanced Calculus

Multiple Integrals

Spherical coordinates

Triple integrals

Spherical coordinates In the system of spherical coordinates a point P = [x, y, z] is represented by x y z

= ρ sin φ cos θ, = ρ sin φ sin θ, = ρ cos φ,

0≤φ≤π 0 ≤ θ ≤ 2π . ρ≥0

Note that ρ2 = x 2 + y 2 + z 2 = r 2 + z 2 . The r coordinate in cylindrical coordinates is related to ρ and φ by q r = x 2 + y 2 = ρ sin φ . also

r tan φ = = z

p

x2 + y2 z

Dr. Lahcen Laayouni

and Advanced Calculus

tan θ =

y . x

Multiple Integrals

Spherical coordinates

Triple integrals

The volume element in spherical coordinates The volume element in spherical coordinates is given by dV = ρ2 sin φd ρd φd θ . If f is a continuous function on the bounded region R , then ZZZ ZZZ f (x, y, z)dV = g(ρ, φ, θ)ρ2 sin φd ρd φd θ , R

S

where g(ρ, φ, θ) = f (x, y, z) and S is the region R expressed in spherical coordinates. Remark Spherical coordinates are suited to problems involving spherical symmetry and, in particular, to regions bounded by spheres centered at the origin, circular cones with axes along the z-axis, and vertical planes containing the z-axis. Dr. Lahcen Laayouni

Advanced Calculus

Multiple Integrals

Spherical coordinates

Triple integrals

Example Evaluate

I=

ZZZ

(1 + x 2 + y 2 )dV ,

R

3.0 2.5 2.0

where R is the region in the first octant bounded by two spheres of radius 2 and 3 respectively.

z1.5 1.0 3.0 0.5

2.0

1.5 0.0 0.0 0.0

0.5 0.5

1.0

1.0

2.5

y

1.5 x

2.0

2.5

3.0

In spherical coordinates, the region R is given by the inequalities 2 ≤ ρ ≤ 3 , 0 ≤ φ ≤ π/2 , 0 ≤ θ ≤ π/2 , and the integrand becomes 1 + x 2 + y 2 = 1 + r 2 = 1 + ρ2 sin2 φ . Then Z π/2 Z π/2 Z 3 I = dθ dφ (1 + ρ2 sin2 φ)ρ2 sin φd ρ 0

0

Dr. Lahcen Laayouni

2

Advanced Calculus

Multiple Integrals

Spherical coordinates

Triple integrals

Example Thus I =

Z

π/2



0

= = = =

Z

π/2



0

Z

3

(ρ2 sin φ + ρ4 sin3 φ)d ρ

2

 ρ=3 ρ3 ρ5 3 dθ dφ sin φ + sin φ 3 5 0 0 ρ=2  Z π/2 Z π/2  19 211 dθ sin φ + sin3 φ d φ 3 5 0 0   φ=π/2 Z π/2 517 211 2 dθ − cos φ − sin φ cos φ 15 15 0 φ=0 Z π/2 517 517 dθ = π. 15 0 30 Z

π/2

Z

π/2



Dr. Lahcen Laayouni

Advanced Calculus

Multiple Integrals

Spherical coordinates

Triple integrals

Example Evaluate I =

ZZZ q

x 2 + y 2 + z 2 dV ,

E

where E

1.0

is the solid bounded by

0.75 z

z=1,

z 2 = x 2 + y 2 , above the

−1.0

xy -plane.

0.5

0.25 x y −0.5 −0.5 0.0 0.0

−1.0

0.0

0.5

0.5 1.0

1.0

In spherical coordinates the equation of the cone becomes (ρ cos φ)2 = (ρ sin φ cos θ)2 + (ρ sin φ sin θ)2 , which reduces to cos2 φ = sin2 φ(cos2 θ + sin2 θ) = sin2 φ . or cos φ = sin φ , from which we find that tan φ = 1 .Thus the cone is simply defined by 0 ≤ φ ≤ π/4 . Dr. Lahcen Laayouni

Advanced Calculus

Multiple Integrals

Spherical coordinates

Triple integrals

Example The plane is described by ρ cos φ = 1 , or ρ = sec φ , thus Z 2π Z π/4 Z sec φ I = dθ dφ ρρ2 sin φd ρ 0

= = =

Z Z

0



dθ 0

dθ 0

= −

π/4

Z

π/4

sin φd φ

0



1 4

0

Z





0

2π 4

Z

1

sec φ

ρ3 d ρ

0

sin φd φ

0

Z

Z

Z

π/4

0 √ 2/2



 ρ=sec φ ρ4 4 ρ=0

sin φ sec4 φd φ = √

1 4

Z



0

du 1 2 =− π+ π 4 6 3 u

Dr. Lahcen Laayouni

Advanced Calculus



Z

π/4 0

sin φ dφ cos4 φ

Multiple Integrals

Spherical coordinates

Triple integrals

Example Evaluate I = R

ZZZ

(x 2 + y 2 )dV , where R

is the region inside the sphere

x 2 + y 2 + z 2 = 4a2

and outside the

cylinder x 2 + y 2 = a2 , a > 0 . In spherical coordinates the sphere has the equation x 2 + y 2 + z 2 = ρ2 = 4a2 , or simply ρ = 2a , while the cylinder has the equation x 2 + y 2 = r 2 = (ρ sin φ)2 = a2 , or ρ sin φ = a . Thus the region R is described by 0 ≤ θ ≤ 2π , a sin φ

π 6

≤φ≤

≤ ρ ≤ 2a . Dr. Lahcen Laayouni

Advanced Calculus

π 2

, and

Multiple Integrals

Spherical coordinates

Triple integrals

Example (cont.) In terms of spherical coordinates the required integral is Z 2π Z π/2 Z 2a I=2 dθ sin φd φ ρ2 sin2 φρ2 d ρ . π/6

0

a/ sin φ

Using the cylindrical coordinates the region R is described by √ 0 ≤ θ ≤ 2π , a ≤ r ≤ 2a , and 0 ≤ z ≤ 4a2 − r 2 , and Z Z Z √ 2π

I=2

0

4a2 −r 2

2a



rdr

r 2 dz ,

0

a

which is much more easier than (1). Thus Z 2π Z 2a p I=2 dθ r 3 4a2 − r 2 dr 0

a

Dr. Lahcen Laayouni

Advanced Calculus

(1)

Multiple Integrals

Spherical coordinates

Triple integrals

Example (cont.) Setting u = 4a2 − r 2 , du = −2rdr , then Z 2π Z 3a2 √ I = dθ (4a2 − u) udu 0 0 ! 3a2 u 3/2 u 5/2 44 √ 2 = 2π 4a − = 3πa5 . 3/2 5/2 5 0

Remark If the domain of integration has spherical and axial symmetry, then we chose cylindrical or spherical coordinates system according to whether the integrand involves x 2 + y 2 or x 2 + y 2 + z 2 term. Dr. Lahcen Laayouni

Advanced Calculus