Sugeno fuzzy Hopfield neural networks with mixed ... - Semantic Scholar

Report 3 Downloads 106 Views
Expert Systems with Applications 39 (2012) 472–481

Contents lists available at ScienceDirect

Expert Systems with Applications journal homepage: www.elsevier.com/locate/eswa

Delay-dependent robust asymptotic state estimation of Takagi–Sugeno fuzzy Hopfield neural networks with mixed interval time-varying delays q P. Balasubramaniam a,⇑, V. Vembarasan a, R. Rakkiyappan b a b

Department of Mathematics, Gandhigram Rural University, Gandhigram 624 302, Tamilnadu, India Department of Mathematics, Bharathiar University, Coimbatore 641 046, Tamilnadu, India

a r t i c l e

i n f o

Keywords: T–S fuzzy model Linear matrix inequality Lyapunov–Krasovskii functional Hopfield neural networks State estimation

a b s t r a c t This paper investigates delay-dependent robust asymptotic state estimation of fuzzy neural networks with mixed interval time-varying delay. In this paper, the Takagi–Sugeno (T–S) fuzzy model representation is extended to the robust state estimation of Hopfield neural networks with mixed interval time-varying delays. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error is globally asymptotically stable. Based on the Lyapunov–Krasovskii functional which contains a triple-integral term, delay-dependent robust state estimation for such T–S fuzzy Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. The unknown gain matrix is determined by solving a delay-dependent LMI. Finally two numerical examples are provided to demonstrate the effectiveness of the proposed method. Ó 2011 Elsevier Ltd. All rights reserved.

1. Introduction Neural Networks (NNs) have been extensively studied and successfully applied in many areas such as combinatorial optimization, signal processing, and pattern recognition (Gupta, Jin, & Homma, 2003). Different models of neural networks such as Hopfield-type neural networks, cellular neural networks, Cohen–Grossberg neural networks, and bidirectional associative memory neural networks have been extensively investigated in the literature, see Chua and Yang (1988), Gopalsamy (2004), Hopfield (1984), and Otawara et al. (2002) and the references cited therein. Among many NNs, Hopfield neural networks (Hopfield, 1984) are the most popular. The problem of stability analysis of NNs has attracted the attention of numerous investigators. Within the electronic implementations of NNs, the finite switching speed of amplifiers and active devices as well as the inherent transmission time of neurons will incur time-delays in the interaction among the neurons. Therefore stability studies of delayed neural networks (DNNs) have also received considerable investigations (Chen & Wang, 2007; Li & Chen, 2009). Fuzzy logic theory has shown to be an appealing and an efficient approach to dealing with the analysis and synthesis problems for complex nonlinear systems. Among various kinds of fuzzy methods, Takagi–Sugeno (T–S) fuzzy models provide a successful method to describe certain complex nonlinear systems using some q The work was supported by UGC-SAP(DRS-II), Government of India, New Delhi under the grant number F.510/2/DRS/2009 (DRS-I). ⇑ Corresponding author. Tel.: +91 451 2452371; fax: +91 451 2453071. E-mail address: [email protected] (P. Balasubramaniam).

0957-4174/$ - see front matter Ó 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.eswa.2011.07.038

local linear subsystems (Cao & Frank, 2000; Takagi & Sugeno, 1985; Takagi & Sugeno, 1993; Tanaka, Ikede, & Wang, 1997). These linear subsystems are smoothly blended together through fuzzy membership functions. Recently, T–S fuzzy models are used to describe delayed Hopfield neural networks. The T–S fuzzy models can be used to represent some complex nonlinear systems by having a set of delayed Hopfield neural networks as its consequent parts. With the outstanding approximation ability of the T– S fuzzy models, T–S fuzzy delayed Hopfield neural networks (Ali & Balasubramaniam, 2009; Huang, Ho, & Lam, 2005; Li, Chen, Zhou, & Qian, 2009; Sheng, Gao, & Yang, 2009) are recently recognized as an appealing and efficient tool in approximating complex nonlinear systems. Some stability problems for T–S fuzzy delayed Hopfield neural networks have been investigated in Huang et al. (2005), Ali and Balasubramaniam (2009), Li et al. (2009), and Sheng et al. (2009). On the other hand, in relatively large-scale NNs, normally only partial information about the neuron states is available in the network outputs. Therefore, in order to utilize the NNs, one would need to estimate the neuron state through available measurements. Recently, the state estimation problem for NNs has received some research interest, see He, Wang, Wu, and Lin (2006), Wang, Ho, and Liu (2005), Wang, Liu, and Liu (2009), Ahn (2010), Huang, Feng, and Cao (2008), Park and Kwon (2008), Li, Fei, and Zhu (2009), Li and Fei (2007), Lou and Cui (2008), and Wang and Song (2010). Recently, Ahn (2010) studied new delay-dependent state estimation of T–S fuzzy NNs with time-varying delays. To the best of the authors knowledge, delay-dependent robust state estimation of fuzzy NNs with mixed interval time-varying delays have

473

P. Balasubramaniam et al. / Expert Systems with Applications 39 (2012) 472–481

not been studied in the literature and it is very important in both theories and applications. In practice, the time-varying delay often arises and may vary in a range. However, in Huang et al. (2005), Ali and Balasubramaniam (2009), Li et al. (2009), Sheng et al. (2009), He et al. (2006), Wang et al. (2005), Wang et al. (2009), Ahn (2010), Huang et al. (2008), Park and Kwon (2008), Li et al. (2009), Li and Fei (2007), Lou and Cui (2008), and Wang and Song (2010), the lower bound of time-varying delay is fixed as 0, which might cause considerable conservativeness for stability region estimation. So far, removing the above conservative limitations have become urgently necessary. This situation motivates our present investigation. Recently, in the paper (Sun, Liu, Chen, & Rees, 2009), author studied Lyapunov–Krasovskii functionals containing triple integral terms for having less conservative results. Motivated by the above discussions, delay-dependent robust asymptotic state estimation of fuzzy Hopfield NNs with mixed interval time-varying delay are considered in this paper. By constructing a Lyapunov–Krasovskii functional containing tripleintegral term and by employing some analysis techniques, sufficient conditions are derived for the considered NNs in terms of LMIs, which can be easily calculated by MATLAB LMI control Toolbox. The unknown gain matrix is determined by solving a delay-dependent LMI. Numerical examples are given to illustrate the effectiveness of the proposed method. This paper is organized as follows. In Section 2, we formulate the problem. In Section 3, LMI problem for the delay-dependent asymptotic state estimation of T–S fuzzy delayed Hopfield NNs with mixed interval time varying delays are proposed. In Section 4, LMI problem for the delay-dependent robust asymptotic state estimation of T–S fuzzy delayed Hopfield NNs with mixed interval time varying delays are proposed. In Section 5, two numerical examples are given to illustrate the effectiveness of the proposed method, and finally, conclusions are presented in Section 6. Notations: Throughout this paper, Rn and Rnn denote the n-dimensional Euclidean space and the set of all n  n real matrices respectively. The superscript T denotes the transposition and the notation X P Y (similarly, X > Y), where X and Y are symmetric matrices, means that X  Y is positive semidefinite (similarly, positive definite). k  k is the Euclidean norm in Rn . The notation ⁄ always denotes the symmetric block in one symmetric matrix. Sometimes, the arguments of a function or a matrix will be omitted in the analysis when no confusion can arise. 2. Problem description and preliminaries Consider the following Hopfield neural networks with timevarying delay described by

_ xðtÞ ¼ AxðtÞ þ B0 gðxðtÞÞ þ B1 gðxðt  sðtÞÞÞ þ B2

Z

t

gðxðsÞÞds þ J trðtÞ

ð1Þ here xðÞ ¼ ½x1 ðÞ; x2 ðÞ; . . . ; xn ðÞT 2 Rn is neuron state vector, x(t) = n(t), t 6 0; n(t) is the initial condition. A = diag{a1, . . . , an} is a diagonal matrix with ai > 0 i = 1, . . . , n, B0, B1 and B2 represent the connection weighting matrices, respectively, gðxðÞÞ ¼ ½g 1 ðx1 ðÞÞ; . . . ; g n ðxn ðÞÞT 2 Rn denotes the neuron activation function, and J ¼ ½J1 ; . . . ; Jn T 2 Rn is a constant input vector. s(t) P 0 denotes the time-varying delay and is assumed to satisfy 0 6 s(t) 6 s2 and r(t) denotes the distributed time-varying delays, and satisfies 0 6 r(t) 6 rM. To ensure the existence of a solution to (1), it is assumed that the time-varying delay s(t) and r(t) has a bounded derivative. We introduce the time-varying delays s(t) such that

0 6 s1 6 sðtÞ 6 s2 ;

s_ ðtÞ 6 l < 1; 0 6 rðtÞ 6 rM :

ð2Þ

In this paper the following neural network with mixed interval time-varying delays and network measurements equation are considered

_ ¼ AxðtÞ þ B0 gðxðtÞÞ þ B1 gðxðt  sðtÞÞÞ þ B2 xðtÞ

Z

t

gðxðsÞÞds þ J

trðtÞ

yðtÞ ¼ CxðtÞ þ Df ðt;xðtÞÞ;

ð3Þ

where yðtÞ 2 Rm is the measurement output, C, D are known constant matrices with appropriate dimension. f : R  Rn ! Rm is the neuron-dependent nonlinear disturbances on the network outputs and satisfies

jf ðt; xÞ  f ðt; yÞj 6 jFðx  yÞj;

ð4Þ

where the constant matrix F 2 Rnn is known. We assume that the neuron activation functions g() in (1) satisfy the following Lipschitz condition

jgðxÞ  gðyÞj 6 jWðx  yÞj;

ð5Þ

where W 2 Rnn is a known constant matrix. It is well known that the information about the neuron states is often incomplete from the network measurements (outputs) in applications and the network measurements are subject to nonlinear disturbances. For the DNNs (3), we construct the full-order state estimation as follows

^x_ ðtÞ ¼ A^xðtÞ þ B0 gð^xðtÞÞ þ B1 gð^xðt  sðtÞÞÞ þ B2

Z

t

gð^xðsÞÞds

trðtÞ

þ J þ KðyðtÞ  C ^xðtÞ  Df ðt; ^xðtÞÞÞ

ð6Þ nm

where ^ xðtÞ is the estimation of the neuron state, and K 2 R is the estimator gain matrix to be designed. Define the error eðtÞ ¼ xðtÞ  ^ xðtÞ; /ðtÞ ¼ gðxðtÞÞ  gð^ xðtÞÞ, and wðtÞ ¼ f ðt; xðtÞÞ  f ðt; ^ xðtÞÞ. Thus, the error-state system is given as follows:

_ eðtÞ ¼ ðA þ KCÞeðtÞ þ B0 /ðtÞ þ B1 /ðt  sðtÞÞ Z t /ðsÞds  KDwðtÞ þ B2

ð7Þ

trðtÞ

Obviously e(t) is bounded and continuously differentiable on [d, 0], where d = max{s2, rM}. In this section, delay-dependent state estimation of fuzzy NNs with time-varying delay will be represented by a T–S fuzzy model. The lth rule of this T–S fuzzy model is of the following form: Plant Rule l: IF h1(t) is gl1 , . . ., and hv(t) is glv , THEN

_ ¼ Al xðtÞ þ B0l gðxðtÞÞ þ B1l gðxðt  sðtÞÞÞ þ B2l xðtÞ

Z

t

gðxðsÞÞds þ J

trðtÞ

yðtÞ ¼ C l xðtÞ þ Dl f ðt;xðtÞÞ

ð8Þ T

where g ¼ 1; . . . ; v Þ is the fuzzy set. h(t) = [h1(t), h2(t), . . . , hv(t)] is the premise variable vector and v is the number of IF-THEN rules. The defuzzified output system (8) is inferred as follows: l k ðk

_ xðtÞ ¼

m X l¼1

þB2l

hl ðhðtÞÞfAl xðtÞ þ B0l gðxðtÞÞ þ B1l gðxðt  sðtÞÞÞ Z

)

t

gðxðsÞÞds þ J

trðtÞ

yðtÞ ¼

m X

hl ðhðtÞÞfC l xðtÞ þ Dl f ðt; xðtÞÞg

l¼1

The full-order state estimator is of the form

ð9Þ

474

P. Balasubramaniam et al. / Expert Systems with Applications 39 (2012) 472–481

^x_ ðtÞ ¼

m X l¼1

þB2l

hl ðhðtÞÞfAl ^xðtÞ þ B0l gð^xðtÞÞ þ B1l gð^xðt  sðtÞÞÞ Z

c

Z

Z

c

xT ðsÞMxðsÞds P

0 t

 j ½yðtÞ  C l ^xðtÞ  Dl f ðt; ^xðtÞÞg; gð^xðsÞÞds þ J þ K

ð10Þ

trðtÞ

 j ¼ Pm hj ðhðtÞÞK j and ^ where K xðtÞ is the estimation of the neuron j¼1 state, and K j 2 Rnm is the estimation gain matrix to be designed. Let the error state be eðtÞ ¼ xðtÞ  ^ xðtÞ; /ðtÞ ¼ gðxðtÞÞ  gð^ xðtÞÞ, and wðtÞ ¼ f ðt; xðtÞÞ  f ðt; ^ xðtÞÞ, then the error-state system can be expressed by

T

c

xðsÞds M

Z

0



c

xðsÞds :

0

Lemma 2.4 Sun, Liu, and Chen, 2009. For any constant matrix Z = ZT and a scalar s1 > 0, s2 > 0 such that the following integrations are well defined



Z

t

q ðsÞZ qðsÞds 6  tsðtÞ

Z

1

T

s2

!T

t

qðsÞds

Z

Z

tsðtÞ

!

t

qðsÞds ;

tsðtÞ

ð12Þ

_ eðtÞ ¼ ðAl þ K j C l ÞeðtÞ þ B0l /ðtÞ þ B1l /ðt  sðtÞÞ Z t /ðsÞds  K j Dl wðtÞ: þ B2l

ð11Þ

trðtÞ



Z

ts1

qT ðsÞZ qðsÞds 6 

tsðtÞ

Z

1 ðs2  s1 Þ

!T

ts1

qðsÞds

Z

Z

tsðtÞ

!

ts1

qðsÞds ;

tsðtÞ

ð13Þ

where

h

m i X Al ðtÞ B0l ðtÞ B1l ðtÞ B2l ðtÞ ¼ hl ðhðtÞÞ½Al

B0l

B1l

B2l ;

l¼1

h

i

C l ðtÞ Dl ðtÞ K j ¼

m X

 hl ðhðtÞÞ C l



Z

tsðtÞ

qT ðsÞZ qðsÞds 6 

ts2

Dl

Kj ; 

and

Z

Z

0

 s2

M l ðhðtÞÞ hl ðhðtÞÞ ¼ Pm ; l¼1 M l ðhðtÞÞ

Ml ðhðtÞÞ ¼

v Y

glj ðhj ðtÞÞ

M l ðhðtÞÞ P 0;

m X

l ¼ 1; . . . ; m;

6



hl ðhðtÞÞ P 0;

l ¼ 1; . . . ; m;

where

hl ðhðtÞÞ ¼ 1:

l¼1

Let e(t;n) be the trajectory of system (11) under the initial condition e(h) = n(h) on s2 6 h 6 0 in LF ð½s2 ; 0; Rn Þ. It is obvious that the system (11) admits a trivial solution e(t;0) = 0. To derive our main results, the following essential Lemmas are introduced.

Z

2

s22

0

 s2

X1 þ XT3 X1 2 X3 < 0; "

XT3 X2

X1 

< 0;

or



X2 



X3 < 0: X1

Lemma 2.2 Xie, Fu, and Souza, 1992. Let M = MT, H and E be real matrices of appropriate dimensions, with satisfying FT(t)F(t) 6 I then

M þ HFðtÞE þ ET F T ðtÞHT < 0; if and only if there exists a positive scalar

 > 0 such that

1 M þ HHT þ ET E < 0:



Lemma 2.3 Gu, Kharitonov, and Chen, 2003 . For any constant matrices M 2 Rmm , scalar c > 0, vector function x : ½0; c ! Rm such that the integrations concerned are well defined, then

T Z

t

Z

0

qðsÞdsdh Z

s2

tþh



t

qðsÞdsdh ;

ð15Þ

tþh

qT ðsÞZ qðsÞdsdh

tþh

2

Z s1 Z

s212

s2

T Z s1 Z

t

t

qðsÞdsdh Z

s2

tþh

qðsÞdsdh

 ð16Þ

tþh

s212 ¼ s22  s21 .

"

#

qT ðsÞZ qðsÞ qT ðsÞ P0 qðsÞ Z 1

ð17Þ

Integration of (17) from t + h to h yields,

"Rt

qT ðsÞZ qðsÞds Rt qðsÞds tþh

Rt

tþh

qT ðsÞds

# P0

hZ 1

ð18Þ

Integration of (18) from s2 to 0 yields,

2R0

s2

Rt

R0

tþh

s2

#

Z

Proof. For the proof of inequality (15), notice that

4

if and only if

ts2

t

tþh

Lemma 2.1 Boyd, Ghaoui, Feron, and Balakrishnan, 1994 , Schur Complement. Given constant matrices X1, X2 and X3 with appropriate dimensions, where XT1 ¼ X1 and XT2 ¼ X2 > 0, then

qðsÞds ;

qT ðsÞZ qðsÞdsdh

Z s1 Z

6

i¼1

m X

ts2



tsðtÞ

qðsÞds Z

t

 s2

M l ðhðtÞÞ > 0

for all t. Therefore, it implies

T  Z

tsðtÞ

tþh

j¼1

in which glj ðhj ðtÞÞ is the grade of membership of hj(t) in glj . According to the theory of fuzzy sets, we have

Z

ð14Þ



l¼1

1 ðs2  s1 Þ

qT ðsÞZ qðsÞdsdh

Rt

tþh

R0

 s2

Rt tþh

R0

qðsÞdsdh

 s2

qT ðsÞdsdh

hZ 1 dh

3 5P0

ð19Þ

Inequality (19) is equivalent to inequality (15) according to Schur complements. Similarly we can prove (16). The proof has been completed. h

3. Main results In this section, we derive a new delay-dependent criterion for global asymptotic stability of the fuzzy NNs (11) using the Lyapunov functional method combining with LMI approach. Theorem 3.1. Given scalars s2 > s1 P 0 and l, the equilibrium point of fuzzy NNs (11) with mixed interval time-varying delays is globally asymptotically stable if there exist matrices

P ¼ PT > 0; Q ¼ Q T ¼



Q 11 Q 12 

Q 22



> 0; R ¼ RT ¼



R11 R12 

R22



> 0;

475

P. Balasubramaniam et al. / Expert Systems with Applications 39 (2012) 472–481





S11 S12 > 0; Ri ¼ RTi > 0;  S22   W 11 W 12 > 0; W ¼ WT ¼  W 22

S ¼ ST ¼

T

T ¼ T > 0;



T

Z¼Z ¼

Z 11

Z 12



Z 22



Proof. Choose the Lyapunov–Krasovskii functional for system (11) as

i ¼ 1; 2;

Xli;j



1515

þ

>0

Z

qT ðsÞRqðsÞds þ

ts1

< 0;

ð20Þ

Xl1;1 ¼ 2PAl  2Ll C l þ Q 11 þ R11 þ S11 þ s2 W 11 þ s12 Z 11 2s12  W 22  2R1  R2 þ aW T W þ dF T F; s2 ðs2 þ s1 Þ 1 Xl1;2 ¼ W 22 ; Xl1;3 ¼ Xl1;4 ¼ Xl1;5 ¼ Xl1;6 ¼ Xl1;7 ¼ 0; 1

s2

Xl1;8 ¼ Q 12 þ R12 þ S12 þ s12 W 22  ATl  C Tl LTl ;

 1 1 X ¼ R1 þ RT1 ; Xl1;10 ¼ R2 þ RT2 ; ðs2 þ s1 Þ s2 s2  1 1 l T T X1;11 ¼ R þR þ R þ R ; Xl1;12 ¼ PB2l ; s2 1 1 ðs2 þ s1 Þ 2 2 Xl1;13 ¼ PB0l ; Xl1;14 ¼ PB1l ; Xl1;15 ¼ Ll Dl ; 1 1 2 Xl2;2 ¼ ð1  lÞQ 11  W 22  W 22  Z 22 þ bW T W; 1

W T12 þ

s2

Xl2;3 ¼ ð1  lÞQ 12 ; Xl2;4 ¼

1

s12

s12

s12

Z 22 ; Xl2;6 ¼

X

l 2;7

¼X

l 2;8

1

1

s12

ðW 22 þ Z 22 Þ;

1 T ¼ X ¼ 0; X ¼ X ¼ Z ; s2 s12 12  1 Xl2;11 ¼  W T12 þ Z T12 ; Xl2;12 ¼ Xl2;13 ¼ Xl2;14 ¼ Xl2;15 ¼ 0; l 2;5

l 2;9

W T12 ;

l 2;10

s12

Xl3;3 ¼ ð1  lÞQ 22 ; Xl3;4 ¼ Xl3;5 ¼ Xl3;6 ¼ Xl3;7 ¼ Xl3;8 ¼ Xl3;9 ¼ Xl3;10 ¼ Xl3;11 ¼ Xl3;12 ¼ Xl3;13 ¼ Xl3;14 ¼ Xl3;15 ¼ 0; l 4;4

X

¼ R11 

1

s12

l 4;5

Z 22 ; X

¼ R12 ;

þ

Z

Z

0

 s2

þ

Z

1

s12

Z T22 ;

Xl4;11 ¼ Xl4;12 ¼ Xl4;13 ¼ Xl4;14 ¼ Xl4;15 ¼ 0; Xl5;5 ¼ R22 ; Xl5;6 ¼ Xl5;7 ¼ Xl5;8 ¼ Xl5;9 ¼ Xl5;10 ¼ Xl5;11 ¼ Xl5;12 ¼ Xl5;13 ¼ 1

s12

ðW 22 þ Z 22 Þ; Xl6;7 ¼ S12 ;

Xl6;8 ¼ Xl6;9 ¼ Xl6;10 ¼ Xl6;11 ¼ Xl6;12 ¼ Xl6;13 ¼ Xl6;14 ¼ Xl6;15 ¼ 0; Xl7;7 ¼ S22 ; Xl7;8 ¼ Xl7;9 ¼ Xl7;10 ¼ Xl7;11 ¼ Xl7;12 ¼ Xl7;13 ¼ Xl7;14 ¼ Xl7;15 ¼ 0; Xl8;8 ¼ Q 22 þ R22 þ S22 þ s2 W 22 þ s12 Z 22 þ

s22

s212

R2  2P; 2 X ¼ X ¼ X ¼ 0; X ¼ PB2l ; Xl8;13 ¼ PB0l ; 1 2 Xl8;14 ¼ PB1l ; Xl8;15 ¼ Ll Dl ; Xl9;9 ¼  W 11  2 R1 ; s2 s2 1 Xl9;11 ¼  2 R1 þ RT1 ; Xl9;10 ¼ Xl9;12 ¼ Xl9;13 ¼ Xl9;14 ¼ Xl9;15 ¼ 0; s2 1 2 1  l X10;10 ¼  Z 11  2 R2 ; Xl10;11 ¼  2 R2 þ RT2 ; l 8;9

l 8;10

s

l 10;12

12 l 10;13

l 8;11

2

R1 þ

l 8;12

s12

s12

¼ Xl10;14 ¼ Xl10;15 ¼ 0; 2 1 2 Xl11;11 ¼  2 R1  ðW 11 þ Z 11 Þ  2 R2 ;

X

¼X

s2

s12

þ

s12

Xl11;12 ¼ Xl11;13 ¼ Xl11;14 ¼ Xl11;15 ¼ 0; Xl12;12 ¼ T; Xl12;13 ¼ Xl12;14 ¼ Xl12;15 ¼ 0; Xl13;13 ¼ aI þ r2M T; Xl13;14 ¼ Xl13;15 ¼ 0; Xl14;14 ¼ bI; Xl14;15 ¼ 0; Xl15;15 ¼ dI;

qT ðsÞSqðsÞds

t

qT ðsÞW qðsÞdsdh þ

Z s1 Z  s2

Z

Z

0

Z s1 Z

0

Z

qT ðsÞZ qðsÞdsdh

tþh

_ T ðsÞR1 eðsÞdsdkdh _ eðsÞ

0

rM

t

_ T R2 eðsÞdsdkdh _ eðsÞ

tþk

h

Z

t

tþk

h

 s2

t

Z

t

/T ðsÞT/ðsÞdsdh

ð21Þ

tþh

where qT(s) = [eT(s) e˙T(s)]. Taking the time derivative of V (t) along the trajectory of system (11) yields

_ t ; tÞ 6 2eT ðtÞPAl eðtÞ  2eT ðtÞPK j C l eðtÞ þ 2eT ðtÞPB0l /ðtÞ Vðe Z t þ 2eT ðtÞPB1l /ðt  sðtÞÞ þ 2eT ðtÞPB2l /ðsÞds trðtÞ

 2eT ðtÞPK j Dl wðtÞ þ qT ðtÞQ qðtÞ  ð1  lÞqT ðt  sðtÞÞ  Q qðt  sðtÞÞ þ qT ðtÞRqðtÞ  qT ðt  s1 ÞRqðt  s1 Þ þ qT ðtÞSqðtÞ  qT ðt  s2 ÞSqðt  s2 Þ þ s2 qT ðtÞW qðtÞ Z t þ s12 qT ðtÞZ qðtÞ  qT ðsÞW qðsÞds tsðtÞ



Z

tsðtÞ

qT ðsÞðW þ ZÞqðsÞds 

þ þ

s22 _ T 2

_  e ðtÞR1 eðtÞ

2

Z

Z

0

 s2

s212 _ T

_  e ðtÞR2 eðtÞ

þ /T ðtÞr2M T/ðtÞ 

Z

ts1

qT ðsÞZ qðsÞds

tsðtÞ t

_ e_ T ðsÞR1 eðsÞdsdh

tþh

Z  s1 Z s2

Z

t

trM

t

_ e_ T ðsÞR2 eðsÞdsdh

tþh

T Z /ðsÞds T

t

 /ðsÞds : ð22Þ

trM

Also add free-weighting matrices

h 2e_ T ðtÞP ðAl þ K j C l ÞeðtÞ þ B0l /ðtÞ þ B1l /ðt  sðtÞÞ # Z t _ /ðsÞds  K j Dl wðtÞ  eðtÞ ¼0 þB2l

ð23Þ

trðtÞ

Since functions f() and g() satisfy (4) and (5), respectively, it is clear that

/ðtÞT /ðtÞ ¼ jgðxðtÞÞ  gð^xðtÞÞj2 6 jWeðtÞj2 ¼ eT ðtÞW T WeðtÞ; wT ðtÞwðtÞ ¼ jf ðt; xðtÞÞ  f ðt; ^xðtÞÞj2 6 jFeðtÞj2 ¼ eT ðtÞF T FeðtÞ: Then, for positive scalars a > 0, b > 0, d > 0 we have,

a½eT ðtÞW T WeðtÞ  /T ðtÞ/ðtÞ P 0

ð24Þ

b½eT ðt  s1 ðtÞÞW T Weðt  s1 ðtÞÞ  /T ðt  s1 ðtÞÞ/ðt  s1 ðtÞÞ P 0 ð25Þ

s12 ¼ s2  s1 : Moreover the gain matrix is given by Kj = P1Lj.

t

tþh

0

þ rM

Z

ts2

ts2

Xl4;6 ¼ Xl4;7 ¼ Xl4;8 ¼ Xl4;9 ¼ 0; Xl4;10 ¼ 

Xl5;14 ¼ Xl5;15 ¼ 0; Xl6;6 ¼ S11 

qT ðsÞQ qðsÞds

t

 s2

l 1;9

t

tsðtÞ

with appropriate dimensions, further there exist positive scalars a > 0, b > 0 and d > 0 such that the following LMI holds



Z

Vðet ; tÞ ¼ eT ðtÞPeðtÞ þ

d½eT ðtÞF T FeðtÞ  wT ðtÞwðtÞ P 0:

ð26Þ

476

P. Balasubramaniam et al. / Expert Systems with Applications 39 (2012) 472–481

X3;9 ¼ X3;10 ¼ X3;11 ¼ X3;12 ¼ X3;13 ¼ X3;14 ¼ X3;15 ¼ 0;

From (22)–(26) and applying Lemma 2.4, we have



_ t ; tÞ 6 f ðtÞ X fðtÞ < 0; Vðe T

l ij

ð27Þ

which is equivalent to m X

_ t ; tÞ 6 Vðe

hl ðhðtÞÞ

1

s12

Z 22 ; X4;5 ¼ R12 ;

X4;6 ¼ X4;7 ¼ X4;8 ¼ X4;9 ¼ 0; X4;10 ¼ 

m X

hj ðhðtÞÞfT ðtÞXlij fðtÞ < 0;

1

s12

X5;6 ¼ X5;7 ¼ X5;8 ¼ X5;9 ¼ X5;10 ¼ X5;11 ¼ X5;12 ¼ X5;13 ¼ X5;14 ¼

where

 f ðtÞ ¼ eT ðtÞ eT ðt  sðtÞÞ e_ T ðt  sðtÞÞ eT ðt  s1 Þ e_ T ðt  s1 Þ !T Z t T T T eðsÞds e ðt  s2 Þ e_ ðt  s2 Þ e_ ðtÞ

X5;15 ¼ 0; X6;6 ¼ S11 

T

1

s12

ðW 22 þ Z 22 Þ; X6;7 ¼ S12 ;

X6;8 ¼ X6;9 ¼ X6;10 ¼ X6;11 ¼ X6;12 ¼ X6;13 ¼ X6;14 ¼ X6;15 ¼ 0; X7;7 ¼ S22 ; X7;8 ¼ X7;9 ¼ X7;10 ¼ X7;11 ¼ X7;12 ¼ X7;13 ¼ X7;14 ¼ X7;15 ¼ 0;

tsðtÞ

Z

!T

ts1

Z

eðsÞds

tsðtÞ

tsðtÞ

T Z eðsÞds

ts2

T

X8;8 ¼ Q 22 þ R22 þ S22 þ s2 W 22 þ s12 Z 22 þ

!T

t

T

X8;14 ¼ PB1 ; X8;15 ¼ LD; X9;9 ¼ 

_ t ; tÞ < 0. Hence, Hence (27) is equivalent to (20), which implies Vðe error-system (11) is globally asymptotically stable. In the following, we will discuss the global asymptotic stability criteria for NNs without fuzzy, then (11) becomes

ð28Þ

trðtÞ



T

P ¼ P > 0; Q ¼ Q ¼

Q 11 Q 12 Q 22





T



> 0; R ¼ R ¼

R11 R12



R22



Z ¼ ZT ¼



Z 11

Z 12



Z 22



>0

with appropriate dimensions, further there exist positive scalars a > 0, b > 0 and d > 0 such that the following LMI holds

ðXi;j Þ1515 < 0; 1

s2

W 22

2s12 1 R2 þ aW T W þ dF T F; X1;2 ¼ W 22 ; ðs2 þ s1 Þ s2 X1;3 ¼ X1;4 ¼ X1;5 ¼ X1;6 ¼ X1;7 ¼ 0;  2R1 

X1;8 ¼ Q 12 þ R12 þ S12 þ s12 W 22  AT  C T LT ; 1

W T12 þ

1

1

s2

R1 þ RT1 ; Xl1;10 ¼

 1 R2 þ RT2 ; ðs2 þ s1 Þ  R2 þ RT2 ; X1;12 ¼ PB2 ;

R1 þ RT1 þ

1 ð s2 þ s1 Þ X1;13 ¼ PB0 ; X1;14 ¼ PB1 ; X1;15 ¼ LD; 1 1 2 X2;2 ¼ ð1  lÞQ 11  W 22  W 22  Z 22 þ bW T W;

X1;11 ¼

s2

s2

X2;3 ¼ ð1  lÞQ 12 ; X2;4 ¼

s12

1

s12

X2;5 ¼ X2;7 ¼ X2;8 ¼ 0; X2;9 ¼ X2;11 ¼ 

1 

s12

X10;10 ¼ 

2

s22

R1 ;

ðR1 þ RT1 Þ; X9;10 ¼ X9;12 ¼ X9;13 ¼ X9;14 ¼ X9;15 ¼ 0;

1

s12

Z 11 

2

s212

R2 ; X10;11 ¼ 

1

s212

ðR2 þ RT2 Þ;

X11;11 ¼ 

2

s22

R1 

1

s12

ðW 11 þ Z 11 Þ 

2

s212

R2 ;

X12;13 ¼ X12;14 ¼ X12;15 ¼ 0; X13;13 ¼ aI þ r2M T; X13;14 ¼ X13;15 ¼ 0; X14;14 ¼ bI; X14;15 ¼ 0; X15;15 ¼ dI; s12 ¼ s2  s1 :

Proof. The proof immediately follows from the similar way of proof of Theorem 3.1, hence it is omitted. This completes the proof. h Remark 3.3. It is shown in Theorem 3.1 that the global asymptotic stability of the delayed fuzzy NNs (11) can be checked by examining the solvability of the LMI (20), which can be readily conducted by utilizing the Matlab LMI toolbox.

ð29Þ

X1;1 ¼ 2PA  2LC þ Q 11 þ R11 þ S11 þ s2 W 11 þ s12 Z 11 

s2

1

s22

W 11 

R2  2P;

> 0;

   S11 S12 W 11 W 12 S¼S ¼ > 0; Ri ¼ RTi > 0; i ¼ 1; 2; W ¼ W T ¼ > 0;  S22  W 22

X1;9 ¼ 

s212

Moreover the gain matrix is given by K = P1L.



T ¼ T T > 0;

R1 þ

X11;12 ¼ X11;13 ¼ X11;14 ¼ X11;15 ¼ 0; X12;12 ¼ T;

Corollary 3.2. Given scalars s2 > s1 P 0 and l, the equilibrium point of NNs (28) with mixed interval time-varying delays is globally asymptotically stable if there exist matrices

T

X9;11 ¼ 

1

s2

2

X10;12 ¼ X10;13 ¼ X10;14 ¼ X10;15 ¼ 0;

_ eðtÞ ¼ ðA þ KCÞeðtÞ þ B0 /ðtÞ þ B1 /ðt  sðtÞÞ Z t /ðsÞds  KDwðtÞ:  þ B2

T

s22

2 X8;9 ¼ X8;10 ¼ X8;11 ¼ 0; X8;12 ¼ PB2 ; X8;13 ¼ PB0 ;

/ðsÞds

trðtÞ

 / ðtÞ / ðt  sðtÞÞ w ðtÞ : T

Z T22 ;

X4;11 ¼ X4;12 ¼ X4;13 ¼ X4;14 ¼ X4;15 ¼ 0; X5;5 ¼ R22 ;

j¼1

l¼1

X4;4 ¼ R11 

1

s2

1

s12

W T12 ; X2;10 ¼

4. Robust state estimation criterion

ðW 22 þ Z 22 Þ;

In this section, we will derive the delay-dependent global robust state estimation criterion for the following fuzzy NNs with mixed interval time-varying delays

1

_ eðtÞ ¼ ððAl þ DAl ðtÞÞ þ K j C l ÞeðtÞ þ ðB0l þ DB0l ðtÞÞ/ðtÞ

s12

Z 22 ; X2;6 ¼

Remark 3.4. In Ahn (2010), the author studied delay-dependent state estimation for T–S fuzzy delayed Hopfield NNs. Also in Wang and Song (2010), the author studied state estimation for neural networks with mixed interval time-varying delays. With the best of our knowledge, robust stability criteria is not studied for state estimation of fuzzy DNNs with mixed interval time-varying delays. The following section reports the robust asymptotic state estimation conditions of fuzzy DNNs with mixed interval time-varying delays.

s12

Z T12 ;

W T12 þ Z T12 ; X2;12 ¼ X2;13 ¼ X2;14 ¼ X2;15 ¼ 0;

X3;3 ¼ ð1  lÞQ 22 ; X3;4 ¼ X3;5 ¼ X3;6 ¼ X3;7 ¼ X3;8 ¼

þ ðB1l þ DB1l ðtÞÞ/ðt  sðtÞÞ þ ðB2l þ DB2l ðtÞÞ Z t /ðsÞds  K j Dl wðtÞ;  trðtÞ

ð30Þ

477

P. Balasubramaniam et al. / Expert Systems with Applications 39 (2012) 472–481

The state x1 and its estimation 10

amplitude

5 0 −5 −10

True State Estimation 0

1

2

3

4

5 6 time t The state x2 and its estimation

7

8

9

10

6

amplitude

4 2 0 −2 True State Estimation

−4 −6

0

1

2

3

4

5 time t The error states

6

7

8

9

10

5

amplitude

e1 e2 0

−5

0

1

2

3

4

5 time t

6

7

8

9

10

Fig. 1. The error trajectories are converging to zero for l = j = 1.

where the parametric uncertainties are assumed to be of the form

½DAl ðtÞ DB0l ðtÞ DB1l ðtÞ DB2l ðtÞ ¼ Hl F l ðtÞ½E1l

E2l

E3l

E4l 

ð31Þ

in which Hl, E1l, E2l, E3l and E4l are known real constant matrices of appropriate dimensions with

F Tl ðtÞF l ðtÞ 6 I:

ð32Þ

where

b l ¼ 2PAl  2Ll C l þ Q 11 þ R11 þ S11 þ s2 W 11 þ s12 Z 11  X 1;1  2R1 

1

s2

W 22

2s12 R2 þ aW T W þ dF T F þ l ET1l E1l ; ð s2 þ s1 Þ

T bl X 12;12 ¼ T þ l E4l E4l ; T 2 bl X 13;13 ¼ aI þ rM T þ l E2l E2l ;

Theorem 4.1. Given scalars s2 > s1 P 0 and l, the equilibrium point of fuzzy NNs (30) with mixed interval time-varying delays is globally asymptotically stable if there exist matrices

P ¼ PT > 0; Q ¼ Q T ¼



Q 11 Q 12 Q 22





> 0; R ¼ RT ¼



R11 R12 ast R22



T ¼ T T > 0;

Z ¼ ZT ¼

Z 11

Z 12



Z 22



>0

with appropriate dimensions, further there exist positive scalars a > 0, b > 0 and d > 0 such that the following LMI holds

2

bl X i;j 6 4  

P1l l I 

P2l

3

7 0 5 < 0;

l I

iT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 0 0 0 0 0 0 0T ;

and the other parameters are defined as in Theorem 3.1. Then the error system (30) is globally robustly asymptotically stable and the estimator gain matrix Kj can be designed as Kj = P1Lj, j = 1, 2, . . . , N.





h

P1l ¼ HTl PT

P2l ¼ ½0 0 0 0 0 0 0 HTl PT

> 0;

 S11 S12 S¼S ¼ > 0; Ri ¼ RTi > 0; i ¼ 1; 2;  S22   W 11 W 12 > 0; W ¼ WT ¼  W 22 T

T bl X 14;14 ¼ bI þ l E3l E3l ;

ð33Þ

Proof. Replacing Al ; B0l ; B1l ; B2l by Al þ DAl ðtÞ; B0l þ DB0l ðtÞ; B1l þ DB1l ðtÞ; B2l þ DB2l ðtÞ respectively in (11) and applying Lemma 2.2, we obtain the results which are equivalent to (33). This shows that error-system (30) is globally robustly asymptotically stable for all admissible parameter uncertainties satisfying (31) and (32). In the following, we will discuss the global robust asmptotic stability criteria for the system without fuzzy _ ¼ ððA þ DAðtÞÞ þ KCÞeðtÞ þ ðB0 þ DB0 ðtÞÞ/ðtÞ þ ðB1 þ DB1 ðtÞÞ/ðt  sðtÞÞ eðtÞ Z t þ ðB2 þ DB2 ðtÞÞ /ðsÞds  KDwðtÞ; ð34Þ trðtÞ

478

P. Balasubramaniam et al. / Expert Systems with Applications 39 (2012) 472–481

The state x1 and its estimation 10

amplitude

5 0 −5 −10

True State Estimation 0

1

2

3

4

5 6 time t The state x2 and its estimation

7

8

9

10

6

amplitude

4 2 0 −2 True State Estimation

−4 −6

0

1

2

3

4

5 time t The error states

6

7

8

9

10

5

amplitude

e1 e2 0

−5

0

1

2

3

4

5 time t

6

7

8

9

10

Fig. 2. The error trajectories are converging to zero for l = j = 2.

where the parametric uncertainties are assumed to be of the form

where

½DAðtÞ DB0 ðtÞ DB1 ðtÞ DB2 ðtÞ ¼ HFðtÞ½E1

b 1;1 ¼ 2PA  2LC þ Q 11 þ R11 þ S11 þ s2 W 11 þ s12 Z 11  X

E2

E3

E4 

ð35Þ

in which H, E1, E2, E3 and E4 are known real constant matrices of appropriate dimensions with

F T ðtÞFðtÞ 6 I:

P ¼ PT > 0; Q ¼ Q T ¼ 

S11

W ¼ WT ¼

 

T ¼ T T > 0;

S12

S22 W 11



Q 11 Q 12 Q 22





> 0;  W 12

W 22



Z ¼ ZT ¼





> 0; R ¼ RT ¼

Ri ¼ RTi > 0;



R11 R12 

R22



b i;j X

6 4 



P1 I 

P2

b 13;13 ¼ aI þ r2 T þ ET E2 ; X 2 M b 14;14 ¼ bI þ ET E3 ; X 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0T ;

P2 ¼ ½0 0 0 0 0 0 0 HT PT

0 0 0 0 0 0 0T

and the other parameters are defined as in Corollary 3.2. Then the error system (34) is globally robustly asymptotically stable and the estimator gain matrix K can be designed as K = P1L.

i ¼ 1; 2;

> 0; Z 11

Z 12



Z 22

 >0

3

7 0 5 < 0;

I

2s12 R2 þ aW T W þ dF T F þ ET1 E1 ; ð s2 þ s1 Þ

b 12;12 ¼ T þ ET E4 ; X 4

P1 ¼ ½HT PT

> 0;

with appropriate dimensions, further there exist positive scalars a > 0, b > 0 and d > 0 such that the following LMI holds

2

W 22

ð36Þ



Corollary 4.2. Given scalars s2 > s1 P 0 and l, the equilibrium point of NNs (34) with mixed interval time-varying delays is globally asymptotically stable if there exist matrices

S ¼ ST ¼

 2R1 

1

s2

ð37Þ

Proof. Replacing A, B0, B1, B2 by A + DA(t), B0 + DB0(t), B1 + DB1(t), B2 + DB2(t) respectively in (28) and applying Lemma 2.2, we obtain the results which are equivalent to (37). This shows that errorsystem (34) is globally robustly asymptotically stable for all admissible parameter uncertainties satisfying (35) and (36). h Remark 4.3. In Theorem 4.1, the matrix inequality (33) is linear on the parameters l > 0, P > 0, and Ll. Therefore, the global asymptotic convergence of the error dynamics can be readily checked by solving the LMI (33).

479

P. Balasubramaniam et al. / Expert Systems with Applications 39 (2012) 472–481

Remark 4.4. Notice that in Theorem 4.1, the robust state estimation problem is studied for delayed fuzzy NNs with mixed interval time-varying delays under the condition that 0 6 s1 6 s(t) 6 s2 where s1 and s2 are constants. For each s1 P 0 and other known model parameters, it follows from LMI (33) that corresponding s2 can be readily solved by utilizing the Matlab LMI toolbox. Furthermore, if the lower bound of time-varying delays is 0 (Li & Fei, 2007; Li et al., 2009) or another number, we just need to let s1 = 0 or an other number in our criteria.

Therefore, it follows from Theorem 3.1, that the fuzzy NNs (11) is globally asymptotically stable. The response of the state dynamics for the delayed fuzzy NNs (11) which converges to zero asymptotically is shown in Figs. 1 and 2. Example 5.2. Consider the error system (30) with parameters defined as

     3 0 4 0 0:6 0:7 ; A2 ¼ ; B01 ¼ ; 0 5 0 6 0:5 0:4     0:3 0:4 0:7 0:6 ; B21 ¼ ; B11 ¼ 0:2 0:5 0:8 0:5     0:2 0:1 0:1 0:2 B02 ¼ ; B12 ¼ ; 0:1 0:3 0:2 0:1   0:3 0:1 ; C 1 ¼ C 2 ¼ D1 ¼ D2 ¼ I; B22 ¼ 0:2 0:3 " # 2cosðtÞ þ 0:03t2 ; W ¼ 0:01I; J1 ¼ J2 ¼ 2sinðtÞ  0:03t2

A1 ¼ 5. Numerical examples

Example 5.1. Consider the error system (11) with parameters defined as

    4 0 0:6 0:7 A2 ¼ ; B01 ¼ ; 0 5 0 6 0:5 0:4       0:3 0:4 0:7 0:6 0:2 0:1 B11 ¼ ; B21 ¼ ; B02 ¼ ; 0:2 0:5 0:8 0:5 0:1 0:3     0:1 0:2 0:3 0:1 ; B22 ¼ ; C 1 ¼ C 2 ¼ D1 ¼ D2 ¼ I; B12 ¼ 0:2 0:1 0:2 0:3 " # 2cosðtÞ þ 0:03t2 ; W ¼ 0:1I; F ¼ 0:2I: J1 ¼ J2 ¼ 2sinðtÞ  0:03t 2

A1 ¼



3 0



;

The activation function gðxðtÞÞ ¼ 14 ½jxðtÞ þ 1j  jxðtÞ  1j, and the nonlinear disturbance is of the form f(t, x(t)) = 0.4cos(x(t)), the time varying delays are chosen as s(t) = 4.4 + 0.1sin(t), which means s2 = 4.5 when s1 = 2.5, the derivative of time-varying delays s_ ðtÞ 6 l ¼ 0:1, and r(t) = 0.25 + 0.25sin(t), which means rM = 0.5 and using the Matlab LMI toolbox to solve the LMI in Theorem 3.1, we obtained the following matrices

 P¼ R2 ¼

209:8522

11:0496

11:0496 100:4348   4:5224 0:3033



 ;

R1 ¼

0:9435

0:0604



0:0604 0:3082   90:7170 6:7743

;

; Q 11 ¼ ; 0:3033 1:3193 6:7743 56:8943     32:3014 2:4404 32:9480 3:2961 Q 12 ¼ ; Q 22 ¼ ; 5:2296 21:1137 3:2961 14:5626     88:4645 6:4540 30:6117 2:2295 R11 ¼ ; R12 ¼ ; 6:4540 55:0801 4:9163 20:4754     32:0564 3:1550 87:8479 6:4154 R22 ¼ ; S11 ¼ ; 3:1550 14:2800 6:4154 54:8988     30:6116 2:2291 32:0564 3:1549 ; S22 ¼ ; S12 ¼ 4:9163 20:4730 3:1549 14:2774     52:8603 6:2389 20:1318 2:3961 W 11 ¼ ; W 12 ¼ ; 6:2389 22:5983 3:6141 8:6170     9:7365 1:5180 91:1208 8:0340 W 22 ¼ ; Z 11 ¼ ; 1:5180 3:8981 8:0340 49:6459     31:6323 2:8135 15:9321 2:1704 Z 12 ¼ ; Z 22 ¼ ; 5:1159 18:4211 2:1704 8:2523   428:3764 205:1866 T¼ ; 205:1866 313:3236 with the gain matrices



 0:7193 0:0788 K 1 ¼ P1 L1 ¼ ; 0:0427 2:4256   1:2409 0:1160 K 2 ¼ P1 L2 ¼ : 0:0393 2:3525



F ¼ 0:02I

H1 ¼ 0:1I;

E21 ¼ E22 ¼ 0:3I;

H2 ¼ 0:2I;

E11 ¼ E12 ¼ 0:4I;

E31 ¼ E32 ¼ 0:2I;

E41 ¼ E42 ¼ 0:1I;

FðtÞ ¼ tanhðtÞI: The activation function gðxðtÞÞ ¼ 14 ½jxðtÞ þ 1j  jxðtÞ  1j, and the nonlinear disturbance is of the form f(t, x(t)) = 0.4cos(x(t)), the time varying delays are chosen as s(t) = 4.4 + 0.1sin(t), which means s2 = 4.5 when s1 = 2.5, the derivative of time-varying delays s_ ðtÞ 6 l ¼ 0:1, and r(t) = 0.25 + 0.25sin(t), which means rM = 0.5 and using the Matlab LMI toolbox to solve the LMI in Theorem 4.1, we obtained the following matrices

 ; 11:2786 100:1383 0:0612 0:2986     4:4829 0:3077 89:3435 6:9716 R2 ¼ ; Q 11 ¼ ; 0:3077 1:3142 6:9716 55:4036     32:7449 2:5569 33:1568 3:4117 ; Q 22 ¼ ; Q 12 ¼ 5:4179 21:1521 3:4117 14:6648     88:0619 6:6345 31:0491 2:3394 R11 ¼ ; R12 ¼ ; 6:6345 54:6258 5:0964 20:5204     32:2553 3:2655 87:4522 6:5960 ; S11 ¼ ; R22 ¼ 3:2655 14:3830 6:5960 54:4488     31:0489 2:3388 32:2553 3:2653 S12 ¼ ; S22 ¼ ; 5:0964 20:5181 3:2653 14:3803     51:9977 6:2913 20:1481 2:4532 ; W 12 ¼ ; W 11 ¼ 6:2913 22:2328 3:6957 8:5673     9:8527 1:5704 90:3325 8:1823 ; Z 11 ¼ ; W 22 ¼ 1:5704 3:9037 8:1823 49:0748     31:9416 2:9195 16:2151 2:2640 Z 12 ¼ ; Z 22 ¼ ; 5:2812 18:4015 2:2640 8:3111   433:1401 205:9449 T¼ ; 205:9449 317:6054





209:5866

11:2786



;

R1 ¼



0:9264

0:0612

1 ¼ 111:2686; 2 ¼ 173:5972 with the gain matrices

K 1 ¼ P1 L1 ¼ K 2 ¼ P1 L2 ¼



0:7351



0:0443 2:4377  1:2301 0:1219

0:0793

0:0485 2:3449

 ; :

Therefore, it follows from Theorem 4.1, that the fuzzy NNs (30) is robustly globally asymptotically stable. The response of the state

480

P. Balasubramaniam et al. / Expert Systems with Applications 39 (2012) 472–481

The state x1 and its estimation

amplitude

10 5 0 True State Estimation

−5 0

1

2

3

4

5 6 time t The state x2 and its estimation

7

8

9

10

10 True State Estimation

amplitude

5 0 −5 −10

0

1

2

3

4

5 6 time t The error state e1 & e2

7

8

9

10

5

amplitude

e1(t) e2(t) 0

−5

0

1

2

3

4

5 time t

6

7

8

9

10

Fig. 3. The error trajectories are converging to zero for l = j = 1.

The state x1 and its estimation

amplitude

10 5 0 True State Estimation

−5 0

1

2

3

4

5 6 time t The state x2 and its estimation

7

8

9

10

10 True State Estimation

amplitude

5 0 −5 −10

0

1

2

3

4

5 6 time t The error state e1 & e2

7

8

9

10

5

amplitude

e1(t) e2(t) 0

−5

0

1

2

3

4

5 time t

6

7

Fig. 4. The error trajectories are converging to zero for l = j = 2.

8

9

10

P. Balasubramaniam et al. / Expert Systems with Applications 39 (2012) 472–481

dynamics for the delayed fuzzy NNs (11) which converges to zero asymptotically is shown in Figs. 3 and 4.

6. Conclusion This paper investigated the delay-dependent robust asymptotic state estimation of fuzzy Hopfield neural networks with mixed interval time-varying delays. By constructing a new Lyapunov– Krasovskii functional containing triple-integral terms and employing Newton–Leibnitz formulation and linear matrix inequality techniques and introducing free-weighting matrices, some sufficient conditions for robust global asymptotic stability criteria has been derived in terms of linear matrix inequalities (LMIs), which can be easily calculated by MATLAB LMI control toolbox. Through the available output measurements, a state estimator is designed to estimate the neuron states and the dynamics of the estimation error is asymptotically stable. Finally, two numerical examples have been used to demonstrate the usefulness of the main results. In future, research topics would be the extension of the present results to more general cases, for example, the case that the neural network is inherently stochastic, the case that the network modes are subjected to Markovian switching, the case that the delayprobability-distribution-dependent stability and the case that the mode dependent stability. The results will appear in the near future. References Ahn, C. K. (2010). Delay-dependent state estimation for T–S fuzzy delayed Hopfield neural networks. Nonlinear Dynamics, 61, 483–489. Ali, M. S., & Balasubramaniam, P. (2009). Stability analysis of uncertain fuzzy Hopfield neural networks with time delays. Communications in Nonlinear Science and Numerical Simulation, 14, 2776–2783. Boyd, B., Ghaoui, L. E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in systems and control theory. Philadelphia: SIAM. Cao, Y. Y., & Frank, P. M. (2000). Analysis and synthesis of nonlinear timedelay systems via fuzzy control approach. IEEE Transaction on Fuzzy Systems, 8, 200–211. Chen, T., & Wang, L. (2007). Global l-stability of delayed neural networks with unbounded time-varying delays. IEEE Transactions on Neural Networks, 18, 1836–1840. Chua, L., & Yang, L. (1988). Cellular neural networks: Theory and applications. IEEE Transactions on Circuits and Systems I, 35, 1257–1290. Gopalsamy, K. (2004). Stability of artificial neural networks with impulses. Applied Mathematics and Computation, 154, 783–813. Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of time-delay systems. Boston: Birkhäuser.

481

Gupta, M. M., Jin, L., & Homma, N. (2003). Static and dynamic neural networks. New York: Wiley. He, Y., Wang, Q.-G., Wu, M., & Lin, C. (2006). Delay-dependent state estimation for delayed neural networks. IEEE Transations on Neural Networks, 17, 1077–1081. Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, 81, 3088–3092. Huang, H., Feng, G., & Cao, J. (2008). An LMI approach to delay-dependent state estimation for delayed neural networks. Neurocomputing, 71, 2857–2867. Huang, H., Ho, D. W. C., & Lam, J. (2005). Stochastic stability analysis of fuzzy hopfield neural networks with time-varying delays. IEEE Transactions on Circuits and systems – II: Express Briefs, 52, 251–255. Li, X., & Chen, Z. (2009). Stability properties for Hopfield neural networks with delays and impulsive perturbations. Nonlinear Analysis: Real World Applications, 10, 3253–3265. Li, H., Chen, B., Zhou, Q., & Qian, W. (2009). Robust stability for uncertain delayed fuzzy Hopfield neural networks with Markovian jumping parameters. IEEE Transactions on Systems, Man, and Cybernetics B, 39, 94–102. Li, T., & Fei, S. (2007). Exponential state estimation for recurrent neural networks with distributed delays. Neurocomputing, 71, 28–438. Li, T., Fei, S., & Zhu, Q. (2009). Design of exponential state estimator for neural networks with distributed delays. Nonlinear Analysis: Real World Applications, 10, 1229–1242. Lou, X., & Cui, B. (2008). Design of state estimator for uncertain neural networks via the integral-inequality method. Nonlinear Dynamics, 53, 223–235. Otawara, K., Fan, L. T., Tsutsumi, A., Yano, T., Kuramoto, K., & Yoshida, K. (2002). An artificial neural network as a model for chaotic behavior of a three-phase fluidized bed. Chaos, Solitons, Fractals, 13, 353–362. Park, J. H., & Kwon, O. M. (2008). Design of state estimator for neural networks of neutral-type. Applied Mathematics and Computation, 202(1), 360–369. Sheng, L., Gao, M., & Yang, H. (2009). Delay-dependent robust stability for uncertain stochastic fuzzy Hopfield neural networks with time-varying delays. Fuzzy Sets and Systems, 160, 3503–3517. Sun, J., Liu, G. P., & Chen, J. (2009). Delay-dependent stability and stabilization of neutral time-delay systems. International Journal of Robust and Nonlinear Control, 19, 1364–1375. Sun, J., Liu, G. P., Chen, J., & Rees, D. (2009). Improved stability criteria for neural networks with time-varying delay. Physics Letters A, 373, 342–348. Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems Man and Cybernetics SMC15, 116–132. Takagi, T., & Sugeno, M. (1993). Stability analysis and design of fuzzy control systems. Fuzzy Set and Systems, 45, 135–156. Tanaka, K., Ikede, T., Wang, H.O. (1997). An LMI approach to fuzzy controller designs based on the relaxed stability conditions. In Proceedings of the IEEE international conference on fuzzy systems, Barcelona, Spain (pp. 171–176). Wang, H., & Song, Q. (2010). State estimation for neural networks with mixed interval time-varying delays. Neurocomputing, 73, 1281–1288. Wang, Z., Ho, D. W. C., & Liu, X. (2005). State estimation for delayed neural networks. IEEE Transactions on Neural Networks, 16, 279–284. Wang, Z., Liu, Y., & Liu, X. (2009). State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Networks, 22, 41–48. Xie, L., Fu, M., & Souza, CED. (1992). H1 control and quadratic stabilization of systems with parameter uncetainty via output feedback. IEEE Transactions on Automatic Control, 32, 1253–1256.