Surface Modification of TiO2 with Ag Nanoparticles and CuO ...

Report 16 Downloads 48 Views
Supplementary Information

Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis M.G. Méndez-Medrano,a,b E. Kowalska,c A. Lehoux,c A. Herissan,a B. Ohtani,c D. Bahena,d V. Briois,e C. Colbeau-Justin,a J.L. Rodríguez-López,b,* and H. Remita.a,f, * a.

Laboratoire de Chimie Physique, UMR 8000 CNRS, Université Paris-Sud, Université Paris-

Saclay 91405 Orsay, France. b.

c.

Advanced Materials Department, IPICYT, 78216 San Luis Potosi, SLP, Mexico.

Institute for Catalysis, Hokkaido University, North 21, West 10, 001-0021 Sapporo, Japan.

d.

Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional,

l07360, D.F., Mexico. e.

Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette

Cedex - France f.

CNRS, Laboratoire de Chimie Physique, UMR 8000, 91405 Orsay, France.

Email: [email protected]; Fax : +33 (0)1 69 15 30 55; Tel: +33 (0)1 69 15 72 58.

S1

Figure S1:1. A low magnification of Ag@CuO1:1 nanoparticles deposited on TiO2P25. 2. HRTEM images of the modified TiO2-P25 with metal nanoparticles a) CuO/P25, b) Ag@CuO1:3/P25, c) Ag@CuO1:1/P25, d) Ag@CuO3:1/P25, and e) Ag/P25.

Figure S2. High resolution HAADF-STEM images with EDS mapping showing coreshell Ag@CuO particles. S2

Figure S3. Energy dispersive X-ray spectroscopy line scan across external nanowires and corresponding HAADF-STEM images for the samples a) CuO/P25, b) Ag@CuO1:3/P25, c) Ag@CuO1:1/P25, d) Ag@CuO3:1/P25 and e) Ag/P25. f) (left) EDS line scan across a nanoparticle of Ag@CuO1:1/P25.The profile was taken along the green line, (right) the blue graph corresponds to Cu-L and the red one to Ag-L signal. S3

Figure S4. 1. XPS spectra a) Ag 3d and c, b and d) Cu 2p of the modified with Ag@CuO1:3/P25, Ag@CuO3:1/P25 samples. And 2. XPs spectra of TiO2-P25 modified with Ag, Ag@CuO ratios and CuO.

S4

Table S1. Binding energies of CuO/P25, Ag/P25 and Ag@CuO/P25 samples determined by XPS showing the binding energies of Ag-3d, Cu-2p, Ti-2p, O-1s

Figure S5: UV-Vis diffuse reflectance spectra of TiO2-P25 and modified TiO2-P25 with Ag, CuO and Ag@CuO at different molar ratios.

S5

Figure S6. TRMC signals at 350,400,450,470, 480,550,600 and 650 nm of pure and modified TiO2-P25 and the modified systems with, Ag, Ag@CuO and CuO.

S6

Figure S7. 1. Degradation curves of phenol under a) UV and b) visible light (λ > 450 nm), of pure system TiO2-P25 and modified systems with, Ag, Ag@CuO and CuO. 2. Photocatalytic evolution of CO2 resulting from the decomposition of acetic acid under irradiation with a) 350 nm, and b) 470 nm of pure system TiO2-P25 and modified systems with, Ag, Ag@CuO and CuO. Table S2. Photocatalytic reaction rates for phenol degradation using Ag and Ag@CuO and CuO NPs under UV irradiation (pseudo-first order reaction) and visible light (zero order reaction)

S7

Figure S8. Comparison between the action spectrum and the DRS spectrum for the used samples: a) pure TiO2-P25; b) CuO/P25, c) Ag@CuO1:3/P25, d) Ag@CuO1:1/P25, e) Ag@CuO3:1/P25, and f) Ag/P25 and g) Action spectra for the acetic acid decomposition using bare and modified TiO2-P25 (with Ag, Ag@CuO different ratios and CuO).

S8