Supplementary Information
Surface Modification of TiO2 with Ag Nanoparticles and CuO Nanoclusters for Application in Photocatalysis M.G. Méndez-Medrano,a,b E. Kowalska,c A. Lehoux,c A. Herissan,a B. Ohtani,c D. Bahena,d V. Briois,e C. Colbeau-Justin,a J.L. Rodríguez-López,b,* and H. Remita.a,f, * a.
Laboratoire de Chimie Physique, UMR 8000 CNRS, Université Paris-Sud, Université Paris-
Saclay 91405 Orsay, France. b.
c.
Advanced Materials Department, IPICYT, 78216 San Luis Potosi, SLP, Mexico.
Institute for Catalysis, Hokkaido University, North 21, West 10, 001-0021 Sapporo, Japan.
d.
Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional,
l07360, D.F., Mexico. e.
Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette
Cedex - France f.
CNRS, Laboratoire de Chimie Physique, UMR 8000, 91405 Orsay, France.
Email:
[email protected]; Fax : +33 (0)1 69 15 30 55; Tel: +33 (0)1 69 15 72 58.
S1
Figure S1:1. A low magnification of Ag@CuO1:1 nanoparticles deposited on TiO2P25. 2. HRTEM images of the modified TiO2-P25 with metal nanoparticles a) CuO/P25, b) Ag@CuO1:3/P25, c) Ag@CuO1:1/P25, d) Ag@CuO3:1/P25, and e) Ag/P25.
Figure S2. High resolution HAADF-STEM images with EDS mapping showing coreshell Ag@CuO particles. S2
Figure S3. Energy dispersive X-ray spectroscopy line scan across external nanowires and corresponding HAADF-STEM images for the samples a) CuO/P25, b) Ag@CuO1:3/P25, c) Ag@CuO1:1/P25, d) Ag@CuO3:1/P25 and e) Ag/P25. f) (left) EDS line scan across a nanoparticle of Ag@CuO1:1/P25.The profile was taken along the green line, (right) the blue graph corresponds to Cu-L and the red one to Ag-L signal. S3
Figure S4. 1. XPS spectra a) Ag 3d and c, b and d) Cu 2p of the modified with Ag@CuO1:3/P25, Ag@CuO3:1/P25 samples. And 2. XPs spectra of TiO2-P25 modified with Ag, Ag@CuO ratios and CuO.
S4
Table S1. Binding energies of CuO/P25, Ag/P25 and Ag@CuO/P25 samples determined by XPS showing the binding energies of Ag-3d, Cu-2p, Ti-2p, O-1s
Figure S5: UV-Vis diffuse reflectance spectra of TiO2-P25 and modified TiO2-P25 with Ag, CuO and Ag@CuO at different molar ratios.
S5
Figure S6. TRMC signals at 350,400,450,470, 480,550,600 and 650 nm of pure and modified TiO2-P25 and the modified systems with, Ag, Ag@CuO and CuO.
S6
Figure S7. 1. Degradation curves of phenol under a) UV and b) visible light (λ > 450 nm), of pure system TiO2-P25 and modified systems with, Ag, Ag@CuO and CuO. 2. Photocatalytic evolution of CO2 resulting from the decomposition of acetic acid under irradiation with a) 350 nm, and b) 470 nm of pure system TiO2-P25 and modified systems with, Ag, Ag@CuO and CuO. Table S2. Photocatalytic reaction rates for phenol degradation using Ag and Ag@CuO and CuO NPs under UV irradiation (pseudo-first order reaction) and visible light (zero order reaction)
S7
Figure S8. Comparison between the action spectrum and the DRS spectrum for the used samples: a) pure TiO2-P25; b) CuO/P25, c) Ag@CuO1:3/P25, d) Ag@CuO1:1/P25, e) Ag@CuO3:1/P25, and f) Ag/P25 and g) Action spectra for the acetic acid decomposition using bare and modified TiO2-P25 (with Ag, Ag@CuO different ratios and CuO).
S8