The Influence of Boundary Conditions and ... - Semantic Scholar

Report 4 Downloads 65 Views
Purdue University

Purdue e-Pubs Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

7-1-2013

The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials J Stuart Bolton Purdue University, [email protected]

Follow this and additional works at: http://docs.lib.purdue.edu/herrick Bolton, J Stuart, "The Influence of Boundary Conditions and Constraints on the Performance of Noise Control Treatments: Foams to Metamaterials" (2013). Publications of the Ray W. Herrick Laboratories. Paper 82. http://docs.lib.purdue.edu/herrick/82

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information.

J. Stuart Bolton Ray. W. Herrick Laboratories School of Mechanical Engineering Purdue University

RASD 2013, Pisa, Italy, July, 2013

 Effect of front and rear surface boundary conditions on foam sound absorption  Influence of edge constraints on transmission loss of poroelastic materials including effect of finite mass supports  “Metamaterial” Barrier

2

3

Normal Incidence Measurement fl off Reflection

4

FilmFilm -faced Polyurethane Foam

Scanning electron micrographs of the foam sample • •

25 mm layer of foam – one side covered with flame‐bonded  film, the other open. Many intact membranes Many intact membranes

5

Reflection Impulse Response

(Film-faced surface up)

(Foam-open surface up)

6

One-Dimensional Poroelastic OneM i l Th Material Theory

Equations of motion: Fluid: Solid:  Based on Zwikker and Kosten, plus Rosin with complex density and air stiffness ff taken k from f Attenborough. b h 7

Boundary Conditions

Open foam surface

Foam surface sealed with an iimperious i b membrane

Foam fixed to a hard backing

8

Reflection Impulse p Response p Predicted Open Surface Foam

Reflection from  rear surface

Film-faced Foam

Disaster!

9

FilmFilm -faced Foam / Thin Air Gap p

Impedance:

10

Film-forced Foam / Thin Air Gap FilmInverted reflection from rear surface

350 Hz

1600 Hz

11

Rear Surface Boundary Conditions 25mm foam layer with bonded membrane 1.

No Airspace:

2.

Airspace: p

12

/ o Bonded/Bonded

o Bonded/Unbonded

membrane foam backing

airspace

o Unbonded/Bonded b d d d d

o Unbonded/Unbonded

13

Normal Incidence Absorption p

– 25 mm, 30kg/m3

o

Foam 

o

Membrane   – 0.045 kg/m2

o

Airspaces  

– 1 mm

Effects of Airspace at front and rear Effects of Airspace at front and rear 1. Film/Foam/Backing    2. Film/Space/Foam/Backing 3. Film/Foam/Space/Backing / / p / g 4. Film/Space/Foam/Space/Backing 14

Impedance p Tube Testing g  Melamine Foam (8.6 kg/m3)  100 mm diameter 100 mm diameter  25 mm thick

 Each sample fit exactly by trimming the diameter & checking the  p y y g g fit with a TL measurement  Two Facing & Two Rear Surface Boundary Conditions  Multiple trials  Multiple samples

15

Sample p Fit: TL Q Qualification Transmission Loss Non‐Zero TL = Sample  N Z TL S l Constrained

As‐Cut 1st Trim 2nd Trim 3rd Trim

Zero TL =  Sample Free to Move

4th Trim

No Leakage

16

Surface Configurations g Front Surface:

Rear Surface:

1

2

1

2

Loose

Glued

Gap

Fixed

1) Plastic film near, but not adhered to foam

1) Small gap between foam & rigid wall

2) Plastic film glued to foam

dh d to rigid d 2)) Foam adhered wall

17

Absorption vs. Configuration - Test Absorption Coefficient

Loose - Gap

Loose - Fixed

Gl d - Gap Glued G

Glued-Fixed

18

Helmholtz Resonator Effect

?

M h i l IImpedance Mechanical d Mass Stiffness Stiff Total Acoustic Impedance

19

Helmholtz Resonator Effect

?

Combined Foam + Helmholtz Resonator System is Similar to Measured System

20

Helmholtz Resonator Effect

? But is it really due to edge gaps?

Measured Glued F i + Fi Facing Fixed d with Edge Sealed

21

22

Resting on Floor

Bonded to Backing

23

Tensioned Membranes Model Verification – Velocity Measurement

25

Model Verification – Vibrational Modes Theory

Experiment

1st

|v/ p|/|v/p|max

Absolute velocity of membrane - Experiment 1 0.5

0 0.05 0

0.05 0

y -0.05 -0.05 x

2nd

26

Model Verification – Experiment SetSet -up

27

Model Verification – Model Optimization o Given experimental results as input Find appropriate material input, properties (To , ρs , η )

 Why this behavior? – Finite size, held at edge, finite stiffness.

28

Glass Fiber Material Inside of Sample Holder

29

Anechoic Transmission Loss (Green) 40 35

Experiment FE Prediction (Edge constrained) Prediction (Unconstrained case)

30

TL (dB)

25 20 15

Increase in TL due to edge constraint (10dB)

10 5 0 2 10

Shearing mode 3

10 F Frequency (Hz) (H )

4

10

30

Poroelastic Material Properties Used in Calculations Material

Bulk density

Porosity

Tortuosity

(Kg/m3)

Estimated flow resistivity

Shear modulus

(MKS Rayls/m)

(Pa)

Loss factor

Yellow

6.7

0.99

1.1

21000

1200

0.350

Green

9.6

0.99

1.1

31000

2800

0.275

31

Variation of Shear Modulus o As shear modulus increases, the minimum location of TL moves to higher frequencies 40 35

S hear S hear S hear S hear

M odulus M odulus M odulus M odulus

= = = =

1000 2000 3000 4000

Pa Pa Pa Pa

30

TL L (dB)

25 20 15 10 5 0 2 10

3

10 F requenc y (Hz )

10

4

32

Variation of Flow Resistivity • Flow resistivity controls TL at low and high frequency limit 40 35

F lo w F lo w F lo w F lo w

re s is t ivit y re s is t ivit y re s is t ivit y re s is t ivit y

= = = =

10000 20000 30000 40000

MKS MKS MKS MKS

R a y ls / m R a y ls / m R a y ls / m R a y ls / m

30

TL (dB)

25 20 15 10 5 0 2 10

3

10 F re q u e n c y (H z )

10

4

33

Investigation of Vibrational Modes of Glass Fiber Materials

34

Vibrational Modes of Fiber Glass Materials (1st and 2nd Modes Modes, Green) FEM

Experiment

(133 Hz)

1

0.5

|vf/p|/|vf/p|max

1st

|vf/p|/|vf/p|max

1

(a)

0 0.05

0.5

(b)

0 0.05

0.05

0

0.05

0

0 y

-0.05

-0.05

0 y

x

(422 Hz)

-0.05

x

1

0.5

|vf/p||/|vf/p|max

2nd

|vf/p||/|vf/p|max

1

-0.05

(c)

0 0.05

0.5

(d)

0 0.05

0.05

0

0.05

0

0 y

-0.05

-0.05

x

0 y

-0.05

-0.05

x

35

Internal Constraint to Enhance the Sound Transmission Loss

36

Sound Transmission Loss (Experiment, Experiment Green) Green) [Density of Plexiglass Plexiglass:: 1717 Kg/m3]

37

Effect of Releasing the Internal CrossCross - Constraint (Measurement) 30

TL(dB)

25

Cardboard Constraint

20 15 10 5 0 10

2

10

3

40 35

(b )

30

TL (dB)

25 20

Plexiglass Constraint

15 10 5 0 10

2

10

3

F re q u e n c y (H z)

heavy constraint required to realize  Relatively Relatively heavy constraint required to realize  low frequency benefit. 38

Effect of Releasing the Internal CrossCross - Constraint (FEM Prediction) 30

Cardboard C db d Constraint

TL (dB)

25 20 15 10 5 0 10

2

10

3

40 35

(b )

30

TL (dB)

25

Plexiglass Constraint

20 15 10 5 0 10

2

10

3

F re q u e n c y (H z)

39

Metamaterials o Metamaterials are artificial materials engineered to have properties that may not be  found in nature. Metamaterials usually gain their properties from structure rather than  composition, using small inhomogeneities to create effective macroscopic behavior. composition, using small inhomogeneities to create effective macroscopic behavior.

From  :  Meta‐Material Sound Insulation by E. Wester, X. Bremaud and B. Smith,  Building Acoustics, 16 (2009)

40

41

Proposed MassMass-Neutral Material Homogenized mat. Cellular panel

nL

Meff : Meff  f  ≡

T 

2 0 c 2 0c  j 2 fMeff  f 

STL  20log T Meff : Mass per unit area Frame (Mat. A)

STL : Sound Transmission Loss

Plate (Mat. B)

nL  L L

Unit cell

 Cellular material with a periodic array of unit cells  Unit cell has components with contrasting mass and moduli of infinite, periodic panel are same as that  Characteristics Characteristics of infinite, periodic panel are same as that  of a unit cell for normally incident sound  42

Low Frequency Enhancement

 A clamped plate has high STL at very low frequencies due to the  effect of boundary conditions and finite size and stiffness.

43

MaterialMaterial -Based Mass Apportioning  Each unit cell  Overall mass constant  Different materials for frame and plate iff i l f f d l  A series of cases for μ between  0.1 and 10000  ρp and ρ ρf varied  Ef varied keeping Ep constant so that Ef E p   f  p Mat. A

Mat. B

Base unit cell

Cellular unit cell

44

Experimental Validation o A good qualitative agreement is observed  between measurements and FE predictions

45

MaterialMaterial -Based Mass Apportioning pp g  As µ↑  High STL region broadens in the low frequency regime  Region between the first peak and dip is widening Region between the first peak and dip is widening  The dip – being shifted to the right – desirable  µ →O(100)→saturates →O(100)→ t t

Ep = 2 GPa 46

Effective Mass as a Function of Frequency  Magnitude of Meff higher than space‐averaged areal mass  in the range of 0‐1000 Hz  An order of magnitude higher in 800 – A d f it d hi h i 800 1000 Hz range 1000 H  Shows strong negative mass effect in the peak STL region T 

2 0 c 2 0c  j 2 fMeff  f 

47

Mechanism Behind High STL

o Averaged displacement phase  switches from negative to  positive positive value at the STL peak value at the STL peak o Parts of the structure move in opposite directions—similar to  observations in LRSMs—resulting in zero averaged  displacement  o “Negative mass” observed without locally resonant elements 48

Hybrid Material

o Cellular structure increases STL at low frequencies o Lightweight, fine fiber fibrous layer can be used to recover  performance at higher frequencies

49

Hybrid Material Low Sound Speed Front

Directs non‐normally  incident sound to core

Metamaterial Core

Locally resonant core

Fibrous Cell Filling

Fibrous cell filling g Increases STL at high Hz

o Predicted Sound Transmission Loss in Hybrid System with Fibrous Cell Filling

50

• Front and rear boundary conditions have a profound effect on the sound absorption  offered by poroelastic offered by poroelastic materials • Those effects are predictable and measureable • Internal constraint of poroelastic materials can increase their transmission loss, but  finite weight of required supports should be accounted for • Metamaterials for transmission loss typically depend on the presence of constraints,  geometry and flexural stiffness for their performance • A proposed mass‐neutral “metamaterial” barrier featuring spatially‐periodic internal  constraints gives low frequency advantage with respect to the mass law but would constraints gives low frequency advantage with respect to the mass law, but would  require supplementary material to mitigate performance loss at high frequencies

51

 Former Students: • Edward R. Green • Bryan H. Song • Jinho Song • Ryan y Schultz

 Current Students: • Srinivas Varanasi • Yangfan Liu

52



pp.  3–11:  J. Stuart Bolton, Ph.D. Thesis, University of Southampton, 1984. Cepstral pp 3 11: J Stuart Bolton Ph D Thesis University of Southampton 1984 Cepstral techniques in the  techniques in the measurement of acoustic reflection coefficients, with applications to the determination of acoustic properties of  elastic porous materials.



pp. 12‐14:  J. Stuart Bolton, Paper DD4 presented at 110th meeting of the Acoustical Society of America, Nashville  TN, November 1985.  Abstract published in the Journal of the Acoustical Society of America 78(S1) S60. Normal  incidence absorption properties of single layers of elastic porous materials.



pp. 15‐21: Ryan Schultz and  J. Stuart Bolton, Proceedings of INTER‐NOISE 2012, New York City, 19‐22 August,  2012.  Effect of solid phase properties on the acoustic performance of poroelastic materials.



pp. 25‐28: Jinho Song and J. Stuart Bolton, Proceedings of INTER‐NOISE 2002, paper N574, 6 pages, Dearborn,  Michigan August 2002 Modeling of membrane sound absorbers Michigan, August 2002. Modeling of membrane sound absorbers.



pp. 29‐33: Bryan H. Song,  J. Stuart Bolton and Yeon June Kang, Journal of the Acoustical Society of America, Vol.  110, 2902‐2916, 2001. Effect of circumferential edge constraint on the acoustical properties of glass fiber  materials.



pp. 34‐35: Bryan H. Song, and J. Stuart Bolton,  Journal of the Acoustical Society of America, Vol. 113, 1833‐1849,  2003. Investigation of the vibrational modes of edge‐constrained fibrous samples placed in a standing wave tube.



pp. 36‐39: Bryan H. Song and J. Stuart Bolton, Noise Control Engineering Journal, Vol. 51, 16‐35, 2003.  Enhancement of the barrier performance of porous linings by using internal constraints.



pp. 42‐49: Srinivas Varanasi, J. Stuart Bolton, Thomas Siegmund and Raymond J. Cipra, Applied Acoustics, Vol. 74,  485 495 2013 The low frequency performance of metamaterial barriers based on cellular structures 485‐495, 2013. The low frequency performance of metamaterial barriers based on cellular structures.



See also: J. Stuart Bolton and Edward R. Green, Paper E4 presented at 112th meeting of the Acoustical Society of  America, Anaheim CA, December 1986.  Abstract published in the Journal of the Acoustical Society of America 80(S1), p. S10.  Acoustic energy propagation in noise control foams:  approximate formulae for surface normal  impedance. 



Presentations available at:  http://docs.lib.purdue.edu/herrick/

53