Session # C 10
Wireless Communication Receiver System Design
권상욱, 고승수, 송형석, 최성훈 이재욱교수님 종합설계
한국항공대학교
Outline Application bands: GPS, PCS, Bluetooth. ① Antenna: PIFA (Tool: CST, ADS) – Independency of band. ② Filter: Triplexer (Tool: Ansoft, ADS) – Square Open-Loop Resonator Filters. ③ LNA: MMIC (Tool: ADS) – Cascode. – Degeneration. – Simulation of extraction S-parameter.
Motivation Individual Topic + Wireless communication
Fig 1. GPS
Fig 2. PCS
Wireless Receiver System
Fig 3. Bluetooth
Pros & Cons -PROSRF Passive device + RF Active device System synthesize -CONS• We don’t show total system’s simulation from one tool. • But we prove that simulation is available from impedance matching at each I/O port.
Design of Triple Bands PIFA Antenna Size : 14.5 x 17 x 7 [mm] For GPS : 1.57 [GHz] PCS : 1.73~1.87 [GHz] US-PCS : 1.85~1.99 [GHz] Bluetooth: 2.4~2.49 [GHz] Fig 4. Geometry of built-in antenna
Fig 5. Plane figure of PIFA
Fig 6. Length of PIFA (unit: [mm])
Independent control of Each Band
Fig 7. simulated return loss for the proposed PIFA
Fig 8. simulated return loss with p.sweep
Parameter • Patch’s form • Feeding point • Capacitive load Fig 9. simulated return loss with p.sweep
Radiation Pattern and Gain of PIFA
Fig10. Simulated 3-D frequency pattern
Up to 2 dB in all requested frequency region.
Compared with Other Papers
GOOD
NORMAL
BAD
Theory and Experiment of Novel Microstrip Slow-Wave Open-Loop Resonator Filters.[7]
Fig 11. (a) Capacitively loaded transmission line resonator and (b) a microstrip Slowwave open-loop resonator on substrate (not shown).
Fig 12. Modeled coupling coefficients of coupled microstrip slow-wave open-loop resonators (a) Magnetic coupling (b) Mixed coupling and (c) Electric coupling.
Design of Four pole open - loop resonators filters.
Port1
Port2
Fig 13. BPF(1) - GPS
Port1
Port2
Fig 14. BPF(2) - PCS
Port1
Port2
Fig 15. BPF(3) - Bluetooth
Design of A Triplexer for GPS, PCS, Bluetooth.[8] Port3
Port4
Port2
Port1
Fig 16. Layout of Triplexer
Fig 17. Result of Triplexer
0.1698pF 125.5nH INPUT PNUM=1 RZ=50Ohm IZ=0Ohm
60.19nH 41.54pF
0.1698pF
0.08144pF 60.19nH 0.2461nH 41.54pF 0.2461nH 0
0
0.1543pF 104.6nH 50.16nH 34.61pF 0.07014pF
0
60.19nH 41.54pF
0.074pF 0.2236nH 34.61pF 125.5nH
0.1543pF 50.16nH
0
0.03363pF 0.1016nH 41.54pF 0
GPS PNUM=2 RZ=50Ohm IZ=0Ohm
PCS PNUM=3 RZ=50Ohm IZ=0Ohm
0.2236nH 0.07014pF 60.19nH 0.1016nH
0
Fig 18. Schematic of Triplexer
BLUETOOTH PNUM=4 RZ=50Ohm IZ=0Ohm
•Result of Triplexer’s Layout is not so good. (Bad matching for bluetooth region.) So we used ideal lumped element circuit.
LNA (GPS) SPEC •Freq: 1575 [MHz] •Gain: 21.45 [dB] •NF: 0.193 [dB] •IIP3: 0.152 [dB] •BW: 1 [MHz] Fig 19. Schematic of LNA(GPS)
Fig 20. S-Parameter
Fig 21. Noise figure
Fig 22. IIP3
LNA (PCS) SPEC •Freq: 1860 [MHz] •Gain: 21.994 [dB] •NF: 0.232 [dB] •IIP3: 13.492 [dB] •BW: 20 [MHz] Fig 23. Schematic of LNA(PCS)
Fig 24. S-Parameter
Fig 25. Noise figure
Fig 26. IIP3
LNA (Bluetooth) SPEC •Freq: 2450 [MHz] •Gain: 19.911 [dB] •NF: 0.707 [dB] •IIP3: 2.167 [dB] •BW: 100 [MHz] Fig 27. Schematic of LNA(Bluetooth)
Fig 28. S-Parameter
Fig 29. Noise figure
Fig 30. IIP3
LNA Spec comparison Spec Item(GPS)
Ours
Maxim[9]
Spec Item(PCS)
Ours
Paper[10]
DC Current
5.5mA
3mA
DC Current
5.5mA
16mA
Gain
21.4
14.7
Gain
22
17
NF
0.193
1.6
NF
0.232
3.4
IIP3
0.15
-4.3
IIP3
13.492
9
S11
-29.6
-9.5
S11
-29
-11
S22
-32.1
-14.5
S22
-12.6
-14.5
Spec Item(Bluetooth)
Ours
Paper[11]
DC Current
5.5mA
5.4mA
Gain
19.9
17.18
NF
0.707
2.82
IIP3
2.167
-5.16
Input VSWR
1.1
1.1
Our results are better than papers altogether.
Conclusion (1) Fig 31. (PIFA) & (Triplexer + LNA) Matching
Fig 32. Impedance PIFA≒50Ω
Fig 33. Impedance Triplexer+LNA≒50Ω
Conclusion (2) LNA(GPS)
Triplexer
LNA(PCS)
LNA (Bluetooth)
Fig 34. Schematic of Triplexer + LNA
Conclusion (3)
Fig 35. Result of PIFA
Fig 36. Result of PIFA + Triplexer
Fig 37. Result of PIFA + Triplexer + LNA
Reference [1] Antennas and Propagation Society International Symposium, 2002. IEEE Volume 4, 16-21 June 2002 Page(s):528 531 vol.4 Digital Object Identifier 10.1109/APS.2002.1017038; “Compact PIFA for GSM/DCS/PCS triple-band mobile phone”; Wen-Shyang Chen, Tzung-Wern Chiou, Kin-Lu Wong. [2] ”Design of a Triple-band PIFA for the Hand-held Terminal”; Hoon park, Jae-hoon Choi. [3] Antennas and Propagation, IEEE Transactions on Volume 51, Issue 5, May 2003 Page(s):1124 – 1126 Digital Object Identifier 10.1109/TAP.2003.811524; “Dual-band planar inverted F antenna for GSM/DCS mobile phones”; ShihHuang Yeh, Kin-Lu Wong, Tzung-Wern Chiou, Shyh-Tirng Fang. [4] Antennas and Wireless Propagation Letters, IEEE Volume 3, Issue 1, 2004 Page(s):104 – 107 Digital Object Identifier 10.1109/LAWP.2004.830021 ; “GSM/DCS/IMT-2000 triple-band built-in antenna for wireless terminals”; Yong-Sun Shin, Byoung-Nam Kim, Won-Il Kwak, Seong-Ook Park. [5] Volume 15, Issue 10, Oct. 2005 Page(s):630 - 632 Digital Object Identifier 10.1109/LMWC.2005. 856692; “Meandered multiband PIFA with coplanar parasitic patches”; Karkkainen, M.K. [6] 한국전자파학회 , 한국전자파학회논문지 제16권 제1호, 2005. 1, pp. 66 ~ 77 (12pages); “다중대역을 가지는 SAR 저 감용 광대역 PIFA 설계 “; 최동근(Donggeun Choi), 신호섭(Hosub Shin) , 김남(Nam Kim), 김용기(Yongki Kim). [7] IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 12, DECEMBER 1997; “Theory and Experiment of Novel Microstrip Slow-Wave Open-Loop Resonator Filters”; Jia-Sheng Hong, Member, IEEE, and Michael J. Lancaster, Member, IEEE. [8] IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 54, NO. 12, DECEMBER 2006; “Design of Matching Circuits for Microstrip Triplexers Based on Stepped-Impedance Resonators”; Pu-Hua Deng, Ming-Iu Lai, Student Member, IEEE, Shyh-Kang Jeng, Senior Member, IEEE, and Chun Hsiung Chen, Fellow, IEEE. [9] www.Maxim ic.com [10] Circuits and Systems, 1998. ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Volume 2, 31 May-3 June 1998 Page(s):73 - 76 vol.2 Digital Object Identifier 10.1109/ISCAS.1998.706844 ; “PCS 1.8 GHz CMOS LNA with on-chip DC-coupling for a subsampling direct conversion front-end”; Parssinen A., Lindfors S., Ryynanen J., Long S.I., Halonen, K. [11] “A Fully Integrated 2.4GHz 0.25μm CMO SLow Noise Amplifier(Bluetooth)”; Wang Wen-qi, Senior Member, IEEE, Xu Liang, Tang Xue-feng and Zhan Fu-chun School of Communication and Information Engineering ,Shanghai University 149 Yan Chang Road ,Shanghai 200072, ChinaSummary: A 1.8 GHz CMOS LNA, which is suitable as a front-end in a direct conversion radio receiver, has been designed. The LNA is designed to drive a capacitive load such as the load of a subsampling mixer.