Engineering and Technology Degree Level: Ph.D. Abstract ID# 298

Report 2 Downloads 167 Views
Graduate   Category:  Engineering  and  Technology   Degree  Level:  Ph.D.   Abstract  ID#  298 FLEXIBLE  SINGLE-­‐WALLED  CARBON  NANOTUBE  (SWNT)  ELECTRONICS:  ELECTROPHORETIC  DIRECTED  ASSEMBLY  AND  2D  TRANSFER  PRINTING  OF  THIN  FILM  SWNT  WIRES  

 

Mehmet  Cem  Apaydin  and  Ahmed  Busnaina  

NSF  Center  for  High-­‐rate  Nanomanufacturing,  Northeastern  University,  Boston,  MA   • 

ABSTRACT

  Single-­‐walled   carbon   nanotubes   (SWNTs)   are   one   of   the   promising   novel   nanomaterials   for   future   nanoscale   electronics   due   to   their   metallic   and   semiconducRng   properRes,   and   1D   charge   transport   capability.   The   typical   requirement   of   most   applicaRons   is   to   form   SWNT   thin   films   at   a   monolayer   or   few   monolayers,   but   to   fully   uRlize  their  unique  characterisRcs,  SWNTs  must  be  aligned  with  the   direcRon   of   current   flow.   Therefore,   control   over   the   posiRon   of   SWNTs   and   the   electronic   characterisRcs   on   the   substrate   layouts   are   criRcally   important   for   scalability   and   reproducibility.   In   this   research,   we   present   the   electrophoreRc   directed   assembly   of   carbon  nanotube  wire  networks  onto  the  source  template  and  a  2D   transfer   prinRng   method   to   the   final   flexible   device.   An   average   carbon  nanotube  density  of  40  SWNTs/μm  (per  unit  channel  width  in   micrometers)   is   obtained   for   single   device.   The   thickness   of   the   directed   assembly   is   tunable   down   to   a   monolayer   of   SWNTs.   Further,   a   highly   efficient   2D   transfer   prinRng   is   integrated   that   enables   the   boLom-­‐up   transistor   fabricaRon.   Transistors   are   fabricated   with   commercially   available   epoxy   (SU8)   gate   dielectric   providing   enhanced   electron   mobility.   ON/OFF   current   raRo   of   up   to   103   is   obtained   from   single   SWNT   wire   networks   with   10μm   transistor  node,  which  is  promising  for  flexible  electronics.    

.    

INTRODUCTION   Current  PercolaKon   in  Random  SWNT  Networks    

                                 (a)                                                                  (b)                                                                                (c)   Figure   1.   (a)   Nanotube   density   vs.   conductance   regime   under   various     percolaRon  behavior  (b)  Random  percolaRon  network  of  SWNTs  that   are  striped  into  5μm  parallel  wires  (c)  The  variaRon  of  ON/OFF  raRo     (le_)   and   the   transconductance   (right)   at   different   widths   of   SWNT     network  [1,  2]         Current  PercolaKon  in  Aligned  SWNT  Networks                  

Figure   2.   The   simple   sRck   percolaRon   network   that   displays   the   current   flow   pathways   of   metallic   (blue)   and   semiconducRng   (red)   SWNTs  under  different  wire  widths  [3]    

GOAL BIOLOGICAL  SENSORS  

FLEXIBLE  ELECTRONICS  

ApplicaRons  aim  to   make  electronics  go   faster  and  more  flexible   CHEMICAL  SENSORS   with  beLer  detecRon                CMOS                     ELECTRONICS   capability  

• 

RESULTS

The  assembly  at  the  minimum  allowable  pulling  speed  (5.0mm/ min)   and   below   (2.5mm/min).   No   assembly   is   observed   above   the  maximum  allowable  pulling  speed  (20.0mm/min).  

""

                                         (a)                                                                                                                        (b)                                

   

METHOD

1) 

Cr/Au/oxide  chips  are  diced  and  cleaned.  

2) 

Chips  are  spin  coated  with  polymethyl  methacrylate  (PMMA).  

3) 

PMMA   is   paLerned   by   e-­‐beam   lithography   and   developed   by   applying  MIBK:IPA  (1:3),  IPA  and  DI  water  sequenRally.  

4) 

The   as-­‐received   SWNT   soluRon   (Brewer   Science   Inc.)   is   diluted   and  sonicated.  

5) 

PaLerned   electrode   is   inserted   with   a   bare   counter   electrode   into   an   aqueous   suspension   of   SWNTs     (with   NH4OH   added   to   adjust   the   ionic   concentraRon),   and   an   electric   field   is   applied   to   drive  the  negaRvely  charged  carbon  nanotubes  (deprotonated  – COOH  funcRonal  groups)  towards  the  paLerned  electrode.  

6) 

A_er   specified   assembly   Rme,   paLerned   electrode   and   counter   electrode   are   withdrawn   from   the   SWNT   soluRon   at   uniform   pulling  speed.  

7) 

PMMA  is  removed.  

20%   of   300nm   wide   wires   display   diode   behavior   at   10μm   gap,   which   means   that   the   current   percolaKon   is   dominated  by  metal-­‐semiconductor  SWNT  juncKons  [4].    

Figure   4.   ElectrophoreRc   assembly   with   the   pulling   speed   of   (a)   2.5mm/min,  and  (b)  5.0mm/min   •  The   assembled   number   of   monolayers   with   voltage   and   pulling   speed  at  fixed  soluKon  condiKons  (pH10.1  and  500ppb  nanotube   concentraKon),  trench  depth  (150nm)  

                                                                 (a)

                                                             (b)   Figure  5.  The  number  of  assembled  monolayers  with  respect  to:  (a)  the   voltage   at   20mm/min   pulling   speed,   (b)   the   pulling   speed   at   2.0V   of   applied  voltage     •  The   assembled   number   of   SWNT   layers   by   tuning   the   PMMA   thickness  

                                                                     (a)

                                                     (b)  

                                                                                                                               (c)  

Figure  6.  A  300nm-­‐wide  wire  a_er  the  assembly:  (a)  AFM  micrograph   of   the   wire,   (b)   SEM   micrograph   of   a   similar   wire,   (c)   Cross-­‐secRonal   view   of   the   red   line   in   inset   (a)   showing   an   average   approximate   thickness  of  2nm   •  Flexible  transistor-­‐based  device  arrays  

Figure  8.  Diode  response  of  some  wires  at  300nm  width     •  Transistor   curves   have   been   obtained   with   the   diodes   displayed   above.   The   ON/OFF   raKo   of   103   has   been   obtained  with  an  electron  mobility  of  ≈0.17  cm2/V.s  per   wire.  

Figure  9.  Transfer  curves  before  (blue)  and  a_er  (red)  thermal   treatments  for  10  hours  at  150°C  

CONCLUSION •   Accomplishments     ü IdenRficaRon  of  the  criRcal  governing  parameters  behind  the   electrophoreRc  directed  assembly   ü Assembly   in   the   scale   of   metal-­‐semiconductor   juncRon   dominated  current  percolaRon  regime   ü Assembly  on  the  order  of  monolayer  thickness   ü Transfer  to  flexible  substrates   ü FabricaRon  and  tesRng  of  the  first  transistors   •   Path  Forward     ü Flexible  SWNT  transistor  fabricaRon  at  smaller  wire  widths   ü The  determinaRon  of  criRcal  device  performance  metrics   ü Flexibility  assessment  

REFERENCES

[1]   N.  Pimparkar,  Q.  Cao,  J.  A.  Rogers,  and  M.  A.  Alam,  “Theory    Figure  3.  The  experimental  flow  chart    

8) 

Photolithography   and   li_-­‐off   are   done   on   SWNT   wires   to   generate  the  Au  electrodes.  

9) 

Polyamic   acid   (PAA)   is   spun   on   the   source   and   drain   interconnects.  

10)  PAA  is  cured  to  polyimide.   11)  Polyimide   is   mechanically   peeled   off   with   the   source   and   drain   SWNT  wire  interconnects.  

                           (a)                                                                                                                            (b)                                 Figure  7.  The  transfer  on  polyimide  chips:  (a)  10mm  x  10mm  chip  with   an   array   of   devices   (b)   a   close-­‐up   microscope   image   of   the   electrode   arrays,  which  are  connected  by  the  SWNT  wiring  

  and  PracRce  of  ‘Striping’  for  Improved  ON/OFF  RaRo  in  Carbon     Thin  Film  Transistors”,  Nano  Research,  2009,  2,  167   Nanonet   [2]   Q.    Cao,   H.   Kim,   N.   Pimparkar,   J.   P.   Kulkarni,   C.   Wang,   M.   Shim,  K.  Roy,  M.  A.  Alam  &  J.  A.  Rogers,  “Medium-­‐scale  Carbon     Nanotube   Thin-­‐film   Integrated   Circuits   on   Flexible   PlasRc     Substrates”,   Nature,  2008,  454,  495   [3]  S.  Somu,     H.  Wang,  Y.  Kim,  L.  Jaberansari,  M.  G.  Hahm,  B.  Li,  T.   Kim,   X.   Xiong,   Y.   J.   Jung,   M.   Upmanyu,   and   A.   Busnaina,     “Topological   TransiRons   in   Carbon   Nanotube   Networks   via     Confinement”,  ACS  Nano,  2010,  4,  4142     Nanoscale   [4]   M.  S.  Fuhrer,  J.  Nygård,  L.  Shih,  M.  Forero,  Y.  Yoon,  M.  S.  C.  

 

Mazzoni,  H.  J.  Choi,  J.  Ihm,S.  G.  Louie,  A.  ZeLl,  and  P.  L.  McEuen,   “Crossed  Nanotube  JuncRons”,  Science,  2000,  288,  494