Flex-Pass-Gate SRAM Design for Static Noise ... - Semantic Scholar

Report 2 Downloads 27 Views
Flex-Pass-Gate SRAM Design for Static Noise Margin Enhancement Using FinFET-Based Technology S. O’uchi, M. Masahara, K. Sakamoto, K. Endo, Y.X. Liu, T. Matsukawa, T. Sekigawa, H. Koike and E. Suzuki National Institute of AIST

Outline • Background • Proposal of Flex-Pass-Gate SRAM – Memory cell – Operation in array

• Performance Estimation for hp-32-nm LSTP Applications – Pass gate design strategy – Static noise margin estimation – Variability tolerance

• Conclusion

Background –SRAM Yield Design Margin

WL BL

WM

BLB

Vth Variation Vth,PG

Vth,PG

Conventional 6Tr-SRAM

Increased Variation WM

V2

V2

Trade Off

RM

RM Vth,PG V1

Read Margin, RM

V1

Write Margin, WM

Malfunctions!

Flex-Pass-Gate SRAM Conventional WL

WM

BL

BLB

RM Vth,PG

Fixed Vth,PG Vth,PG for Write Vth-Ctrl

Vth,PG for Read

Vth-Ctrl

WM D

D Gate S

Gate1

S

Gate2

RM Vth,PG

3T-FinFET

4T-FinFET

Flex-PG

3-Terminal and 4-Terminal FinFETs D Gate

VD

S

Gate Separation

D

VD

G1

S

G2

VG1

VG

10-6

10-7 10-8 10-9

Tsi=8.5nm Tox=1.7nm Lg=160nm

10-10 10-11 10-12 -1

-0.5

0 0.5 VG1(V)

1

ID (A/ μm)

ID (A/ μm)

10-6

VD=0.05V

10-7 10-8

.2V

10-5

G2 =1

10-4

VD=0.05V

10-9

10-10

V

10-5

4T-FinFET

V

10-4

VS

VS

G2 =0 V

3T-FinFET

VG2

10-11 10-12 -1

-0.5

0 0.5 VG1(V)

Tsi=8.5nm Tox=1.7nm Lg=160nm 1

+0.2V-step VG2 Increment

Y-X Liu et al. , 2003IEDM, 2004EDL (AIST)

RM and WM Enhancement • Using Dynamic VG2 Control VG2

VG2

VG2,R

VG2,W 0.40

Lowering VG2

Raising VG2 1.0

V2 (V)

1.0

V2 (V)

RM

V2 BLB

0.5

0.15

WM

VG2=1.0 -0.5

0

0.5

1.0

VG2 (V) -0.15

VG2=-0.5

0.0 0.0

0.5

0.30

Margin (V)

BL V1

0.5

V1 (V)

RM

1.0

0.0 0.0

0.5

V1 (V)

WM

1.0

Margins vs. VG2

Cell Layout and Area Overhead PG(4T-FinFET) 8F

Selective Gate Separation Contact of Vth-Ctrl Line

120F2

15F

VSS

VthVthBL Ctrl VDD Ctrl BLB VSS

3rd Layer (Vth-Ctrl, VDD, VSS, BL) 2rd Layer (WL) 1st Layer (Intra-Cell, not shown)

WL

3 Metal Layers Enough for Interconnection

Selective Gate Separation Gate1

Etching Stopper Fin

Fin Top P.R. Source

Drain

Gate BOX sub

Gate2

100nm

Side Wall

Top View

G1 HFin=100nm

DG Separation by Etching-Back Process

G2 TFin=25nm

100nm

Cross-Sectional View

K. Endo et al., 2007 IEEE EDL (AIST)

Array Configuration • Column-by-Column VG2 Control Column Address Column Peripheral

Row Peripheral

Row Address

WE

MC

MC

MC

MC

WLs

WL BL

Vth-Ctrl

Vth-Ctrl

BLs

BLs

Vth-Ctrl

Memory Cell

BLB Vth-Ctrl

Read Operation • Stable Read PG: On, High Vth Column Peripheral

WL

Row Peripheral

BL

R

R

Hld

Hld

L

L

H L

Vth-Ctrl

BLB Vth-Ctrl

Write Operation • Fast/Stable Write

PG: On, Low Vth WL

Column Peripheral BLB

Row Peripheral

BL

R Hld

W

H

Hld

L

Vth-Ctrl

Vth-Ctrl

PG: Off, Low Vth WL BL

L

H L

Vth-Ctrl

PG-Leakage Current Reduction 1. Negative Low-Level on WL 2. Thicker Second-Gate Oxide

BLB Vth-Ctrl

Performance Estimation Model • Technology assumption: hp-32-nm LSTP LG = 20 nm Gate1

tox1 = 1.2 nm

Drain

Source

tox2: Variable Gate2 10-nm G-S/D Underlap + S/D Doping Profile (σ = 3 nm)

Device Model

Drain Current (μA/μm)

10

4

10

|VDD| = 0.05, 1.0 V

10 3

4

10 3

10 0

10 0

PMOS

NMOS 10-3

10-3

tox1 = tox2 10-6

10-6 -1.00

-0.50

0.00

0.50

Gate Voltage (V)

Simulated ID-VG of 3T-FinFET

1.00

PG Design for Write Margin VG1,RW = 1.0 V

500

Write Margin (mV)

D: tox2 = 7.0 tox1 400

VDD=1.0 V

C: tox2 = 4.0 tox1 B: tox2 = 2.5 tox1

300

A: tox2 = tox1

0.0 V

200

100

0 0.00

Ticker tox2 0.50

1.00

VG2,W

Larger VG2,W 1.50

Second Gate Voltage for Write, VG2,W (V)

tox2

1.0 V

103

Write Condition A: tox2 = tox1, VG2,W = 0.70 V B: tox2 = 2.5tox1, VG2,W = 0.85 V C: tox2 = 4.0tox1 , VG2,W = 1.00 V D: tox2 = 7.0tox1 , VG2,W = 1.25 V

Hld

Hld

Hld

R

W

R

VWL,L VWL,H VWL,L

500 Hld

Hld

Hld

VG2,W

VG2,R

HM 400 100

PG Leakage

300

200 10-3

Ticker tox2 10-6 -1.75 -1.50

-1.00

Hold Margin (mV)

PG Leakage Current (μA/μm)

PG Design for Hold Margin and Leakage Current

VG2,R

VWL,L VDD=1.0 V

100

Less Leakage -0.50

PG Leakage

0 0.00

Low Level of WL Signal, VWL,L (V)

0.0 V

VG2,W

1.0 V

PG Design for RM and Readout Current 750

500

Readout Current 500 300

RM 200 250 B: tox2 = 2.5tox1 C: tox2 = 4.0tox1 D: tox2 = 7.0tox1

-1.00

-0.75

Hld

R

R

R

VWL,H VWL,L

Hld

400

0 -1.25

Hld

Larger Current

Read Margin (mV)

PG Readout Current (μA/μm)

Ticker tox2

Hld

VWL,L

VG2,R

Hld

Hld

VG2,R

VG2,R

VWL,H = 1.0 V VDD=1.0 V

100

-0.50

-0.25

PG Readout

0 0.00

Second Gate Voltage for Read, VG2,R (V)

1.0 V

VG2,R

1.0 V

Summary of PG Design Thicker tox2 • Larger Readout Current • Less Leakage Current

• Larger VG2 for Sufficient WM

Signal Levels for PGs with tox2 = 4.0 tox1 Low Level

High Level

WL Signal VWL (V)

VWL,L / -1.0

VWL,H / 1.0

Vth-Ctrl Signal VG2 (V)

VG2,R / -1.0

VG2,W / 1.0

Additional Peripheral Circuits Column Address

VDD

VDD

VSS[=0]

Column Dec.

VG1,Hld

WE LS Row Dec.

Row Address

Level Shifter LS

LS MC

MC

MC

MC

Vth-Ctrl

Vth-Ctrl

LS

BLs

BLs

WLs

STEM images of the fabricated independent doublegate 4T-FinFETs

Asymmetric-Oxide DG tox1 = tox2 =1.7 nm

Gate-1 tox1

Gate-2 tox2

tox1 < tox2 Hfin = 192 nm Hfin/TSi = 18

Gate-1 tox1 = 1.7 nm

TiN

tox1

tox2 TSi

Gate-2 tox2 = 3.4 nm

TiN TSi = 12 nm

60 nm

Symmetric tox 4T-FinFET

TSi = 11 nm

80 nm

Asymmetric tox 4T-FinFET

Y.X. Liu et al., 2006 IEDM, 2007 IEEE EDL (AIST)

Asymmetric-Oxide DG Lg = 1 μm

tox1 = tox2 = 1.7 nm 10-3

10-3

10-4

VD = 0.05 V

10-5

I D [ A/ μ m ]

tox1 = 1.7 nm tox2 = 3.4 nm

10-4

VD = 0.05 V

10-5

10-6

10-6

10-7

10-7

10-8

10-8

10-9

10-9

10-10

10-10

10-11

10-11

10-12

10-12

10-13 -0.5

10-13 -0.5

0

0.5

1

1.5

V G1 [ V ]

Symmetric tox 4T-FinFET

0

0.5

1

1.5

V G1 [ V ]

Asymmetric tox 4T-FinFET

Y.X. Liu et al., 2006 IEDM, 2007 IEEE EDL (AIST)

RM/WM Enhancement by Flex-PG βPD/βPG = 2

βPD/βPG = 2

Flex-PG

Margin (mV)

400

Read Write 300

200

Both RM and WM are Enhanced

100

0

Planar Bulk

3T-FinFET

Flex-PG

Nominal Margins

Variability in Vth D G

G

60

Device-Level Variability Suppression by Using an Undoped Body

Parameter

Fluctuation

Gate Length Fin Thickness

Gaussian 3σ = 0.2 LG

Channel Dopant Number

Poisson μ = Nchan

μ = 410 mV

μ = 330 mV

40

S

Planar Bulk

3T-FinFET

Frequency

Fluctuation Model

D

S

3σ = 95 mV

3σ = 39 mV

20

0 100

200

300

400

500

Threshold Voltage (mV) * Number of Samples: 200

600

Variability in RM and WM 40

3T-FinFET

Frequency

RM

70-mV Gain of Margin for 6σ Variation

30

Planar Bulk

20

Flex-PG

6σ 10 0 0

100

200

300

400

40

Frequency

WM

3T-FinFET

Comparable Margin for 6σ Variation

30 20

Flex-PG

Planar Bulk

10



0 0

100

200

300

Read/Write Margin (mV)

400

* Number of Samples: 100

Conclusion • Flex-PG SRAM enhances both RM and WM independently. • Asymmetric 4T-FinFET improves the performance of the Flex-PG SRAM. • Flex-PG SRAM is applicable to hp-32nm LSTP applications, with sufficient tolerance for 6-σ variability.