Analyzing Static Noise Margin for Sub-threshold SRAM in 65nm CMOS

Report 5 Downloads 17 Views
Analyzing Static Noise Margin for Sub-threshold SRAM in 65nm CMOS Benton H. Calhoun and Anantha Chandrakasan Massachusetts Institute of Technology

presented at

ESSCIRC 2005

Outline

„

Introduction to Static Noise Margin (SNM)

„

Modeling SNM

„

Dependencies of SNM

„

Impact of Variation on SNM

„

Conclusions

Graphical Method for Finding SNM 0.3 BL

VTC for inverter 2 VTC−1 for inverter 1 VTC for inv 2 with VN=SNM VTC−1 for inv 1 with V =SNM N

BLB

WL M3

M6

M2

Q

M5 M1

M4

QB

VN

Inverter 1

QB (V)

VN

0.15

Inverter 2

0 0

SNM is length of side of the largest embedded square on the butterfly curve

0.15

0.3

Q (V) 0.3

ax

is



Difference in [u,v] VTC for inv 2 −1 VTC for inv 1

QB (V)

0.1 0

u

−0.1

is

ax →

E. Seevinck, F. List, J. Lohstroh, “Static-Noise Margin Analysis of MOS SRAM Cells” JSSC, Oct ‘87.

y

0.2

−0.2 −0.2

−0.1

0

0.1

Q (V)

0.2

0.3

SNM during Hold and Read BL

BLB

WL=0 M3

M6

M2

1

M1

M4

1

0

M6 M5

M1

M4

0.3

Hold

0.15

0.15

BLB prech to 1

M2

QB (V)

QB (V)

M3 M5

0.3

0 0

BL prech to 1 WL=1

0.3

0

Read

0.15

0 0

Q (V)

0.15

Q (V)

Read SNM is worst-case

0.3

Outline

„

Introduction to Static Noise Margin (SNM)

„

Modeling SNM

„

Dependencies of SNM

„

Impact of Variation on SNM

„

Conclusions

Modeling SNM Hold BLB

WL=0 M3

Q

Vth QB =

⎛ V − VT I D = I S exp ⎜⎜ GS ⎝ nVth

M6

M2

M5 M1

M4

In Sub-threshold:

QB

⎛ 1 − exp((−VDD + Q) / Vth ) ⎞ ⎞ n1n3 ⎛⎜ I S 3 ⎜⎜ ⎟⎟ ⎟ ln ln + ⎟ n1 + n3 ⎜⎝ I S 1 Q V 1 exp( / ) − − th ⎝ ⎠⎠ nV n n ⎛V V ⎞ + 1 DD + 1 3 ⎜⎜ T 1 − T 3 ⎟⎟ n1 + n3 n1 + n3 ⎝ n1 n3 ⎠

−V DD ⎛ ⎛ ⎞⎞ ⎜ ⎜ ⎟⎟ V th 2 QB = VDD + Vth ln ⎜ 0.5 * ⎜1 − G + (G − 1) + 4e G ⎟ ⎟, ⎜ ⎟⎟ ⎜ ⎝ ⎠⎠ ⎝ ⎛ n + n6 1 ⎛ VT 4 VT 6 ⎞ ⎞⎟ I V ⎟⎟ ⎜⎜ G = exp ⎜⎜ 4 Q − ln S 6 − DD − − ⎟ n n V I n V V n n th S th th 4 6 4 6 4 6 ⎠⎠ ⎝ ⎝

⎞⎛ ⎛ − VDS ⎟⎟⎜1 − exp ⎜⎜ ⎜ ⎠⎝ ⎝ Vth

Assumptions: •IM3=IM1 •IM6=IM4 sims eqns

QB

BL

VT6−1σ

Q

⎞⎞ ⎟⎟ ⎟ ⎟ ⎠⎠

Modeling SNM Read BL prech to 1 WL=1 M3

BLB prech to 1

M6

M2

M5

Q=low

QB =

•IM2=IM1 •IM6=IM4

M4

QB = high

⎛ 1 − exp((−VDD + Q ) / Vth ) ⎞ IS2 ⎟⎟ + n1Vth ln⎜⎜ 1 exp( / ) Q V I S1 − − th ⎠ ⎝ n + VT 1 + 1 (VDD − VT 2 − Q ) n2

sims eqns

QB

M1

n1Vth ln

Assumptions when Q is low:

VT1−1σ

Q

Outline

„

Introduction to Static Noise Margin (SNM)

„

Modeling SNM

„

Dependencies of SNM

„

Impact of Variation on SNM

„

Conclusions

SNM Dependence on VDD

1.2

1.2

Hold

Read

QB

0.8

QB

0.8

0.4

0.4

0.2

0.2

0 0

0.2 0.4

0.8 Q

1.2

0 0

0.2 0.4

0.8 Q

Read SNM less sensitive in above VT operation

1.2

SNM Dependence on VDD 0.5

SNM (V)

0.4

Hold Read V /2 DD

0.3 0.2 0.1 0 0

0.2

0.4

V

0.6 (V)

0.8

1

DD

VDD noise affects SNM by less than half

1.2

SNM Dependence on Temperature 1.2

0.5

100 °C 0 °C

QB (V)

SNM (V)

0.4 0.3 0.2 0.1 0 −40

0.3 0 0

0

40 T (°C)

VDD=0.3V 0.3

1.2 Q (V)

Temperature impact not large because it affects pFETs and nFETs similarly

80

VDD=1.2V

120

Transistor Sizing Impact on SNM BL

BLB

WL M3

M6

M2

e.g.

M5 M1

M4

QB =

QB

⎛ 1 − exp((−VDD + Q) / Vth ) ⎞ ⎞ n1n3 ⎛⎜ I S 3 ⎜⎜ ⎟⎟ ⎟ + ln ln ⎟ n1 + n3 ⎜⎝ I S 1 Q V − − 1 exp( / ) th ⎝ ⎠⎠ nV n n ⎛V V ⎞ + 1 DD + 1 3 ⎜⎜ T 1 − T 3 ⎟⎟ n1 + n3 n1 + n3 ⎝ n1 n3 ⎠

VDD=0.3V M1,4 M3,6 M2,4

0.1

SNM (V)

Q

Vth

0.08

Hold

0.06 0.04 0.02 0 0

Read 2

4 6 8 Normalized width

10

Sizing impact not so large because of logarithmic impact on VTCs

Cell Ratio and Sub-threshold SNM BL

BLB

WL M3 M2

M5 M1

M4

QB

0.5

0.4

SNM (V)

Q

Cell ratio = (W/L)1 / (W/L)2 or (W/L)4 / (W/L)5

M6

Hold Read

1.2V

0.3

0.2

0.3V

0.1

0 1

1.5

2

2.5

3 Cell Ratio

3.5

4

4.5

Cell ratio much less important for sub-threshold SNM

5

Outline

„

Introduction to Static Noise Margin (SNM)

„

Modeling SNM

„

Dependencies of SNM

„

Impact of Variation on SNM

„

Conclusions

Impact of Mismatch on SNM BL

BLB

WL M3

M6

M2

Q

M5 M1

M4

QB

0.3

Until now, we have assumed that the two sides of the bitcell are symmetric. With mismatch, that is not true.

Hold

QB (V)

SNM high SNM low 0.15

0 0

SNM is the minimum of SNM high and SNM low, which are different due to mismatch 0.15

Q (V)

0.3

Single FET VT mismatch

M3

Sensitivity of SNM to single FET mismatch is roughly linear.

M6

M2

Q

3

BLB

WL

M5 M1

M4

QB

Norm. Read SNM high

BL

2

M1

1

M5 M3

0

−1 −5

5 3

Norm. Read SNM high

Norm. Read SNM high

Above threshold SNM can use 1st order series model

Above−threshold

1 −1 −3 −5

∆V

T4

(σ)

5

5 3

M6

M2 ∆V (σ) T

Sub−threshold Cannot use 1st order series model for subthreshold SNM

1 −1 −3 −5

M4

∆V

T4

(σ)

5

5

Mismatch SNM Distributions Random mismatch in all 6 transistors Minimum WL

600

4 Minimum WL

600

Hold

400

Read 200

0 −0.1

Hold

400

Read 200

0 SNM high (V)0.2

0 −0.1

0 SNM high (V)0.2

Like above-threshold, SNM high and SNM low are normally distributed with threshold voltage mismatch

Modeling PDF for Mismatch SNM is min(SNM high, SNM low); Tail is most important for yield If SNMhigh, SNMlow are independent and identically distributed (iid), then the pdf for SNM is:

fSNM=2fSNMhigh(1-FSNMhigh) 0.2

SNM Hold

0.1

SNM Read

0

SNM high 0

0.1

0.2

SNM low

0.1

SNM low

0

0.2

SNM high 0

0.1

0.2

SNM high and SNM low are nearly identically distributed, but NOT independent

Simulations Compared to Model 3

Try the model anyway: fSNM=2fSNMhigh(1-FSNMhigh) Model matches well for the worst-case tail

10

2

10

1

10

0

10

1k model within 3% of 50k model

10k

−1

10 −0.1

0

SNM (V)

0.1

model sim Model based on short sims is accurate for much longer sims

100 1

Normal distribution

Model for N−pt M−C N=100,500,800,1k,50k SNM (V)

0.06

Global Process Corner Variation

2k

Hold Read

1k 0 0.02

SNM (V) Global variation causes variation in SNM

0.1

Global Variation and Local Mismatch When mismatch occurs in addition to global variation, the mismatch distribution shifts. 3

Occurrences

10

2

10

Model : no global variation Monte−Carlo : no global varn Model : 3σ global varn Monte−Carlo : 3σ global varn

1

10

0

10 −0.1 −0.05 0 0.05 Read SNM (V)

Model still works with global variation and mismatch

Conclusions

„

SNM limits sub-threshold memory yield

„

SNM most strongly depends on mismatch and global variation

„

Proper modeling for the tail of the SNM distribution allows fast estimation of SNM yield