IMSC Canmore Pretis

Report 7 Downloads 69 Views
Testing Climate Models for Time-Varying Forecast Accuracy Using Indicator Saturation Felix Pretis Climate Econometrics & Department of Economics, University of Oxford Jun. 6th 2016 | IMSC Canmore

1/18

Climate Econometrics

0.0 −0.2 −0.4 −0.6

Temp., C

0.2

0.4

0.6

Global Mean Surface Temp. Anomaly

1950

1960

1970

1980

1990

2000

2010

2/18

Climate Econometrics

0.2 −0.2

1960

1970

1980

1990

2000

2010

1950

1960

1970

1980

1990

2000

2010

0.0

0.2

0.4

1950

−0.2

Temp. Model Forecast Error, C

−0.6

Temp., C

0.6

Forecast Error

3/18

Climate Econometrics

0.2 −0.2

1960

1970

1980

1990

2000

2010

1950

1960

1970

1980

1990

2000

2010

0.0

0.2

0.4

1950

−0.2

Temp. Model Forecast Error, C

−0.6

Temp., C

0.6

Shifts in Forecast Error

4/18

Climate Econometrics

0.2 −0.2

1960

1970

1980

1990

2000

2010

1950

1960

1970

1980

1990

2000

2010

0.0

0.2

0.4

1950

−0.2

Temp. Model Forecast Error, C

−0.6

Temp., C

0.6

Uncertainty in Magnitude of Shifts

5/18

Climate Econometrics

0.2 −0.2

1960

1970

1980

1990

2000

2010

1950

1960

1970

1980

1990

2000

2010

0.0

0.2

0.4

1950

−0.2

Temp. Model Forecast Error, C

−0.6

Temp., C

0.6

Uncertainty in Timing of Shifts

6/18

Climate Econometrics

0.2 −0.2

1960

1970

1980

1990

2000

2010

1950

1960

1970

1980

1990

2000

2010

−0.2

0.0

0.2

0.4

1950

0.1 −0.1

No Forecast bias

Positive Forecast bias

Negative Forecast bias

−0.3

Forecast Bias, C

0.3

Temp. Model Forecast Error, C

−0.6

Temp., C

0.6

Testing for Forecast Bias

1950

1960

1970

1980

1990

2000

2010

7/18

Forecasts from Competing Models

Climate Econometrics

0.0 −0.2 −0.4 −0.6

Temp., C

0.2

0.4

0.6

Time-Varying Diebold and Mariano (1995)

1950

1960

1970

1980

1990

2000

2010

8/18

Climate Econometrics

Testing Relative Forecast Performance

0.2 −0.2

1960

1970

1980

1990

2000

2010

1950

1960

1970

1980

1990

2000

2010

0.3

−0.1

0.1

0.3

1950

Improved Forecast Performance

−0.1

0.1

Improved Forecast Performance

Identical Forecast Performance

Identical Forecast Performance

−0.3

Forecast Error Loss Differential Forecast Error Loss Differential

−0.6

Temp., C

0.6

Forecast Err. Loss Differential: |Tt − TbRed,t | − |Tt − TbBlue,t |

1950

1960

1970

1980

1990

2000

2010

9/18

Climate Econometrics

Detecting Shifts using SIS

Model forecast error et using step-indicator saturation step-functions:  1 0 1 1  S1 = 1{t≥j} , j = 1, ..., T =⇒ D =  1 1 1 1

(SIS), full set of  0 0  0 1

0 0 1 1

2

1

0 0

1

2

3

4

5

General: et =

6

T X

7

αj 1{t≥j} j=1 K X

Specific: eˆt =

8

9

10

11

+ t

α ˆ j 1{t≥j}

j=1

10/18

Climate Econometrics

Illustrating ‘split-half’ SIS for a single location shift

Add half indicators and select ones significant at pα e.g. 1%. Indicators included initially 1.0

Indicators retained

Selected model: actual and fitted 15

Block 1

1.0

actual

fitted

10

0.5

0.5

5 0

0

50

100

0

50

100

0

50

100

11/18

Climate Econometrics

Illustrating ‘split-half’ SIS for a single location shift

Drop, add other half indicators and again select at 1%. Indicators included initially

Block 1

1.0

Indicators retained

Selected model: actual and fitted 15

1.0

actual

fitted

10 0.5

0.5

5 0

0

50

100

0

50

100

1.0

Block 2

1.0

0 15

50

100

50

100

10 0.5

0.5

5 0

0

50

100

0

50

100

0

11/18

Climate Econometrics

Illustrating ‘split-half’ SIS for a single location shift

Combine retained indicators and re-select at 1%. Indicators included initially 1.0

Indicators retained

Selected model: actual and fitted 15

1.0

actual

fitted

Block 1

10

0.5

0.5

5 0

0

50

100

0

50

100

1.0

1.0

0 15

50

100

0

50

100

0

50

100

Block 2

10 0.5

0.5

5 0

0

50

0

100

50

100 15

1.0

1.0

Final

10 0.5

0.5

5 0

0

50

100

0

50

100

Matching theory: initially retains last step indicator closest to mean shift, then finds correct shift, so eliminates redundant indicator. Just one step indicator needed. Under H0 : pα T

11/18

Climate Econometrics

Break Magnitude Uncertainty

eˆt =

K X

α ˆ j 1{t≥j}

0.2 0.0

^=α ^1 µ ^=α ^1 + α ^2 µ

−0.2

Temp. Model Forecast Error, C

0.4

j=1

^=α ^1 + α ^2 + α ^3 µ 1950

1960

1970

1980

1990

2000

2010

12/18

Climate Econometrics

Break Magnitude Uncertainty

eˆt =

K X

α ˆ j 1{t≥j}

0.2 0.0

^=α ^1 µ ^=α ^1 + α ^2 µ

−0.2

Temp. Model Forecast Error, C

0.4

j=1

^=α ^1 + α ^2 + α ^3 µ 1950

1960

1970

1980

1990

2000

2010

13/18

Climate Econometrics

0.8 0.6 0.4 0.2 0.0

Break Date Probability

0.2 0.0 −0.2

Temp. Model Forecast Error, C

0.4

1.0

Break Date Uncertainty, ˆ ∼ N(0, σ 2 )

1950

1960

1970

1980

1990

2000

2010

14/18

Climate Econometrics

0.8 0.6 0.4 0.2 0.0

Break Date Probability

0.2 0.0 −0.2

Temp. Model Forecast Error, C

0.4

1.0

Break Date Uncertainty, ˆ ∼ N(0, σ 2 )

1950

1960

1970

1980

1990

2000

2010

15/18

Climate Econometrics

Implementation

R-package ‘gets’ (Pretis, Reade & Sucarrat, 2016): isat: indicator saturation to detect shifts. isat(time series, t.pval=0.01, sis=TRUE)

isattest: testing on the coefficient path fitted

-0.3 0.0

0.3

y

1950

1960

1970

1980

1990

2000

2010

1970

1980

1990

2000

2010

1970

1980

1990

2000

2010

-2

0

2

standardised residuals

1950

1960

-0.4

-0.1

y: Coefficient Path

1950

1960

16/18

Conclusion

Climate Econometrics

Features Outliers jointly with step-shifts No min. break length – no maximum number of shifts

17/18

Climate Econometrics

Conclusion

Features Outliers jointly with step-shifts No min. break length – no maximum number of shifts Further Possibilities: Dynamic models of forecast error (autocorrelation) Autoregressive: isat(..., ar=1:2)

Add covariates (variables affecting forecasts) Covariates: isat(..., mxreg=Covariate)

17/18

Climate Econometrics

Conclusion

Features Outliers jointly with step-shifts No min. break length – no maximum number of shifts Further Possibilities: Dynamic models of forecast error (autocorrelation) Autoregressive: isat(..., ar=1:2)

Add covariates (variables affecting forecasts) Covariates: isat(..., mxreg=Covariate)

Beyond forecast evaluation: Homogenization (measurement corrections) Model Robustness Test ... try it out: ‘gets’ (in R)

17/18

Call for Papers – Conference: Econometric Models of Climate Change October 27-28th, CREATES, Aarhus, Denmark Submit: climateeconometrics.org/conference

18/18

References 1 2

3 4

5

6

7

8

Climate Econometrics

Diebold, F. X., and R. S. Mariano (1995) “Comparing Predictive Accuracy”, Journal of Business and Economic Statistics, 13, 3, 253263. Castle, J.L, Doornik, J.A, Hendry, D.F, and Pretis, F. (2015a) “Detecting Location Shifts during Model Selection using Step-Indicator Saturation” Econometrics, 3, 240-264. Ericsson, N.R. (2015) “How biased are US government forecasts of the federal debt?”, International Journal of Forecasting (in press) Hendry, D.F. and Pretis, F. (2016) “Quantifying the Uncertainty around Break Dates in Models using Indicator Saturation”. Oxford Department of Economics Working paper. Mincer, J., and V. Zarnowitz (1969) “The Evaluation of Economic Forecasts” in J. Mincer (ed.) Economic Forecasts and Expectations: Analyes of Forecasting Behavior and Performance, National Bureau of Economic Research, New York, 346. Pretis, F. Mann, M.L. and Kaufmann, R.K. (2015) “Testing competing models of the temperature hiatus: assessing the effects of conditioning variables and temporal uncertainties through sample-wide break detection”, Climatic Change, doi:10.1007/s10584-015-1391-5 Pretis, F. Reade, J. and Sucarrat, G. (2016) “General-to-Specific (GETS) Modelling and Indicator Saturation with the R Package gets”. Oxford Department of Economics Discussion Paper 794. Pretis, F. (2016) “Classifying Time-Varying Predictive Accuracy in Climate Econometrics Using Bias-Corrected Indicator Saturation”. Oxford Department of Economics Working paper. Under review.

19/18