INSTRUCTIONS – DELETE AFTER READING

Report 4 Downloads 21 Views
21/09/2015

Examination of a Novel Method to Allow for a Range in the Number of Contributors to a DNA Profile: A Key Area of Subjectivity in DNA Evidence Interpretation

S. Cooper, C. McGovern, L. Russell, D. Abarno, D. Taylor, JA. Bright, J. Buckleton

Complex Mixture Interpretation

Increased sensitivity + expanded evidence types = more and more and more mixtures Criticism of divergent approaches to interpretation

2

Does introducing probabilistic software improve consistency in reporting?

9

1

21/09/2015

Collaborative Study- Case 1 2p 1:1 High t

SJ Cooper, CE McGovern, JA Bright, D Taylor, JS Buckleton Investigating a common approach to DNA profile interpretation using probabilistic software FSI: Genetics, 2015. 16: 121-131.

4

Case 1 – LR to Complainant μ=10.3612 σ=0.0210

Log(LR)

8

6

4

2

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Participant number 5

Collaborative Study – Case 2 Lower t, increased ambiguity below ST

6

2

21/09/2015 Log(LR) 16

14

12

8

10

6

4

2

0 1 2 3 4 5 6 7 8 10 11 12

16

9

Participant number

Case 2 – LR to Person of Interest μ=14.28 σ=0.03

13 14

14 15 16 17

12

18

N=2 N=3

19

μ=8.92 σ=0.74

20

Log(LR)

10

8

6

4

2

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Participant number 7

Collaborative Study - Case 3 Complex mixture, using replicates Replicate 2 1

8

Case 3 - Using Multiple Amplifications 14

μ=11.32 σ=0.74 12

Log (LR)

10

8

6

4

2

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Participant number

9

3

21/09/2015

Collaborative Study Conclusions Greatly improved evidence evaluation can be achieved by implementation of the same probabilistic software

When estimating N is unambiguous it is possible to achieve standardization Assigning an estimated N remains a key point of divergence PCR replicates help improve confidence and consistency Study highlighted the need for further work in addressing uncertainty in the estimation of N

Can this be done statistically? 10

An Extension to STRmix™

D Taylor, J-A. Bright and J.S. Buckleton. Interpreting forensic DNA profiling evidence without specifying the number of contributors. FSI: Genetics, 2014. 13: 269-280

STRmix™ uses an iterative re-sampling process to generate the weights for genotype combinations MCMC (Monte Carlo Markov Chain) samples from a multi-dimensional probability space

11

How does it work in theory? The number of contributor N becomes a dimension of the probability space Performs MCMC in multiple probability spaces – each defined by a different number of contributors N

Can now enter a contributor ‘range’ rather than a single estimate

S jw| HPr( N w| H ) j Pr( 1) S  Z Pr( LR  j S j'w| HPr( N w| H ) j ' Pr( 2 )S  Z Pr( j' n

LR 

n

1

n

n'

n'

j

j

j'

j'

| N n , H1 )

j

n'

2

j'

| N n' , H 2 ) 12

4

21/09/2015

How does it perform in practice? Ground Truth Known Profiles – Low t 1P T75 N 1 2 1 2 1 2 1 2 1 2

2 3 4 5

Mr 100 49:51 100 64:36 100 62:38 100 49:51 100 39:61

1P T75

Zn 0.998 0.002 0.921 0.079 0.038 0.962 0.995 0.005 0.752

28 27

Log(LR)

Run 1

26 25 24 23 22

0.248

1

2

3 Run

4

MPN

Stratified

N=1

2p 4:1 T250 N 2 3 2 3 2 3 2 3 2 3

2 3 4 5

Mr 20:80 73:14:13 80:20 11:78:11 21:79 14:79:7 20:80 8:16:76 80:20 16:78:6

Zn 0.244 0.756 0.999 0.001 0.991 0.009 0.198 0.802 0.976 0.024

4

4 3

46:14:14:26 3.017E-13 9:64:27 0.999

4

28:53:11:8 2.086E-04

2

Mr 27:9:64 64:21:9:6 64:9:27 48:36:8:8 28:63:9

Zn 0.999 2.775E-05 0.993 0.007 1.000

26 25 24 23 22

3p 8:3:1 T650, LR to minor

1

2

3 Run

4

Stratified

N=2

25 MPN

24

Log(LR)

3

N 3 4 3 4 3

2p 4:1 T250, LR to minor 28 27

3p 8:3:1 T650 Run 1

5

Log(LR)

Run 1

5

23 22 21 1

2

3

4

Run MPN

13

Stratified

N=3

Case Scenarios – 2p 10:1 Z 2/Z 3

14

Case Scenarios – 2p 10:1 Z 2/Z 3 Case 1 Original Input

2 3 4 5

N 2 3 2 3 2 3 2 3 2 3

Mr 9:91 8:92:0 91:9 3:94:3 91:9 0:6:94 91:9 1:98:1 8:92 2:96:2

Original Input, LR to minor

Zn 0.442 0.558 0.893 0.107 0.997 0.003 0.991 0.009 0.999 1.84E-05

35 30

Log(LR)

Run 1

25 20 15 1

2 3 4 5

N 2 3 2 3 2 3 2 3 2 3

Mr 9:91 7:87:6 92:8 88:7:5 91:9 6:6:88 9:91 8:5:87 9:91 7:88:6

Zn 0.820 0.180 0.991 0.009 0.991 0.009 0.997 0.003 0.986 0.014

3 4 5

N 2 3 2 3 2 3 2 3 2 3

Mr 91:9 86:7:7 9:91 7:6:87 92:8 87:7:7 91:9 7:7:86 9:91 87:7:7

5

with ADI, LR to minor

Zn 3.82E-07 0.999 8.76E-07 0.999 0.012 0.988 1.11E-09 1 0.002 0.998

30 25 20 15 1

Increased Stutter, LR to minor

MPN

35

2

3 Run Stratified

4

5

Ground N=2 Truth

30

Log(LR)

2

4

N=2 truth Ground 35

Case 1 Inc Stutter Run 1

3 Run Stratified

Log(LR)

Run 1

2

MPN

Case 1 with ADI

25 20 15 10 1

2 MPN

3 Stratified

Run

4 N=2

5 N=3 15

5

21/09/2015

Case Scenarios – Degradation Z 2/Z 3

16

Case Scenarios – Degradation Z 2/Z 3 LR to minor 2P T1100 Run

N

Mr

Zn

1

2

89:11

0.993

3

3

4

5

1:12:87

0.007

12

2

10:90

0.080

10

3

3:9:89

0.920

2

11:89

0.004

3

87:1:12

0.996

2

89:11

0.806

4

3

3:91:6

0.194

2

2

11:89

2.43E-05

3

87:12:1

0.999

Log(LR)

2

14

8 6

0 1

2

MPN

3 Run

Stratified

4

N=2

5

N=3

17

Case 2 – Collaborative Study 16

14

16

Collaborative Study, Case 2 N

1

Log(LR)

102 3

8 4

Mr

15 Zn

2

71:29

0.999

3

9:22:69

2.98E-05

2

70:30

0.786

3

5:26:69

0.213

2

72:28

0.995

3

27:3:70

0.004

2

28:72

0.923

3

67:26:7

0.076

5

2

6 6

3

72:28

0.699

69:10:21

0.301

2

29:71

0.920

3

68:15:17

0.079

7 4

2

72:28

0.944

7:26:66

0.055

8

2

29:71

0.957

3

14:17:69

0.042

3

14

Log(LR)

12 Run

13

12

11

10 1

2

3

4

MPN

Stratified

N=2

5

13

15

6

7

8

Run

2

N=3

0 1

2

3

4

5

6

7

8

9

10

11

12

Participant number

14

16

17

18

19

20

18

6

21/09/2015

Translating theory into practice… Most mixtures would not warrant this approach. Real life applications limited to complex, higher order mixtures with ambiguity underpinning the estimation of the number of contributors

Ongoing development… Addressing run-to-run variability Replication and optimising run parameters Extending study to expanded contributor ranges Challenging case examples 19

Acknowledgements Stuart Cooper and Laura Russell, ESR, Auckland, NZ Damien Abarno, FSSA, Adelaide, Australia Duncan Taylor, Jo-Anne Bright, John Buckleton, STRmix™ developers

20

7