Integral Calculus Cheat Sheet By The WeSolveThem.com Team Simplicity is the ultimate sophistication. Leonardo da Vinci
Table of Contents Parametric and Polar Operations ....................................................................................................... 5 Notations ........................................................................................................................................................................................................ 5 First Derivative ............................................................................................................................................................................................ 5 Second Derivative ....................................................................................................................................................................................... 5 Trigonometric .............................................................................................................................................................................................. 5 Circle ................................................................................................................................................................................................................. 5 Ellipse ............................................................................................................................................................................................................... 5 Polar Derivative ........................................................................................................................................................................................... 6 Polar Equations for Ellipse ..................................................................................................................................................................... 6 Polar Equations for Hyperbola ............................................................................................................................................................. 6 Polar Equations for Parabola ................................................................................................................................................................ 6 Antiderivatives & Integration ............................................................................................................. 7 Basic Rules .................................................................................................................................................................................................... 7 Riemann Sum for Area Approximation ............................................................................................................................................ 7 Area Approximation Rules ..................................................................................................................................................................... 8 Midpoint Rule ................................................................................................................................................................................................ 8 Trapezoid Rule ............................................................................................................................................................................................. 8 The Integral Notation โซ ..................................................................................................................... 8 Definite Integral Properties ................................................................................................................................................................... 8 Fundamental Theorems .......................................................................................................................................................................... 9 Limit Definition of a Definite Integral ............................................................................................................................................... 9 Differential Equation (1st order) .......................................................................................................................................................... 9 Common Integrals ................................................................................................................................................................................... 10 Definite Integral Rules .......................................................................................................................................................................... 10 Substitution ................................................................................................................................................................................................ 10 Integration by Parts ................................................................................................................................................................................ 10 Trig Substitution ...................................................................................................................................................................................... 11 Trig Identity ............................................................................................................................................................................................... 11 Partial Fractions ...................................................................................................................................................................................... 11 Integration Steps .............................................................................................................................. 12 Improper Integration ............................................................................................................................................................................ 12 Infinite Bounds .......................................................................................................................................................................................... 12 Undefined Bounds .................................................................................................................................................................................... 12 Areas, Volumes, and Curve Length ................................................................................................... 12 Area with respect to an axis ............................................................................................................................................................... 12 Cartesian ...................................................................................................................................................................................................... 12 Area between curves ............................................................................................................................................................................. 12 Polar Area ................................................................................................................................................................................................... 13 Volume about an axis (Disk Method) ............................................................................................................................................. 13 Volume between curves (Washer Method) ................................................................................................................................. 13 Cylindrical Shell Method ...................................................................................................................................................................... 13 Arc Length .................................................................................................................................................................................................. 13 Surface Area .............................................................................................................................................................................................. 14 Physics Applications .............................................................................................................................................................................. 14 Center of Mass with Constant Density ............................................................................................................................................. 14 Sequences vs Series .......................................................................................................................... 14
Sequence Tests ................................................................................................................................. 14 Series Tests ...................................................................................................................................... 15 Taylor series .............................................................................................................................................................................................. 16 Maclaurin Series ...................................................................................................................................................................................... 16 Power Series .............................................................................................................................................................................................. 16 Radius/Interval of Converges ............................................................................................................................................................ 16 3D Calculus ....................................................................................................................................... 17 Magnitude ................................................................................................................................................................................................... 17 Unit Vectors ............................................................................................................................................................................................... 17 Dot/Cross Product .................................................................................................................................................................................. 17 Dot .................................................................................................................................................................................................................. 17 Properties .................................................................................................................................................................................................... 17 Cross ............................................................................................................................................................................................................... 17 Properties .................................................................................................................................................................................................... 18 Angles Between Vectors ....................................................................................................................................................................... 18 Projections ................................................................................................................................................................................................. 18 Areas/Volume ........................................................................................................................................................................................... 18 Triangle ........................................................................................................................................................................................................ 18 Parallelogram ............................................................................................................................................................................................ 18 Parallelepiped ............................................................................................................................................................................................ 18 Line ................................................................................................................................................................................................................ 18 Line from tip to tip ................................................................................................................................................................................... 18 Equation of a Plane ................................................................................................................................................................................. 19 Vector Functions ..................................................................................................................................................................................... 19 Limit ............................................................................................................................................................................................................... 19 Derivative .................................................................................................................................................................................................... 19 Definite Integral ....................................................................................................................................................................................... 19 Indefinite Integral .................................................................................................................................................................................... 19 Differentiation Rules .............................................................................................................................................................................. 19 Arc length ................................................................................................................................................................................................... 19 Tangents ...................................................................................................................................................................................................... 20 Unit Tangent Vector ............................................................................................................................................................................... 20 Curvature 1 ................................................................................................................................................................................................. 20 Curvature 2 (vector function) ............................................................................................................................................................. 20 Curvature 3 (single variable) ............................................................................................................................................................ 20 Curvature 4 (parametric) ..................................................................................................................................................................... 20 Normal Vector ........................................................................................................................................................................................... 20 Binormal Vector ....................................................................................................................................................................................... 20 Tangential and Normal Components (acceleration) ............................................................................................................... 21 Physics Notations .................................................................................................................................................................................... 21 Position ......................................................................................................................................................................................................... 21 Velocity ......................................................................................................................................................................................................... 21 Speed .............................................................................................................................................................................................................. 21 Acceleration ................................................................................................................................................................................................ 21 Curvature ..................................................................................................................................................................................................... 21 Tangential Component (acceleration) ........................................................................................................................................... 21 Normal Component (acceleration) .................................................................................................................................................. 21 Acceleration ................................................................................................................................................................................................ 21 Note: .............................................................................................................................................................................................................. 21 Dot Product of Velocity and Acceleration ..................................................................................................................................... 21 Tangential Acceleration ........................................................................................................................................................................ 21
Normal Acceleration ............................................................................................................................................................................... 21 Frenet-Serret Formulas ......................................................................................................................................................................... 22
Partial Derivatives ............................................................................................................................ 22 Mixed Partial ............................................................................................................................................................................................. 22 Tangent Plane ........................................................................................................................................................................................... 22 Chain Rule .................................................................................................................................................................................................. 22 PreCalculus Review .......................................................................................................................... 23 Arithmetic ................................................................................................................................................................................................... 23 Exponential ................................................................................................................................................................................................ 23 Radicals ....................................................................................................................................................................................................... 23 Fractions ..................................................................................................................................................................................................... 23 Logarithmic ................................................................................................................................................................................................ 24 Other Formulas/Equations ................................................................................................................................................................. 24 Areas ............................................................................................................................................................................................................. 26 Surface Areas ............................................................................................................................................................................................ 26 Volumes ....................................................................................................................................................................................................... 26 Domain Restrictions .............................................................................................................................................................................. 26 Right Triangle ........................................................................................................................................................................................... 27 Reciprocal Identities ............................................................................................................................................................................... 27 Double Angle Formulas ........................................................................................................................................................................ 28 Half Angle Formulas ............................................................................................................................................................................... 28 Sum and Difference Formulas ............................................................................................................................................................ 28 Product to Sum Formulas ..................................................................................................................................................................... 28 Sum to Product Formulas ..................................................................................................................................................................... 28 Unit Circle ........................................................................................................................................ 29
Parametric and Polar Operations Notations ๐ฅ=๐ฅ ๐ก , ๐ฅ! ๐ก = First Derivative
Second Derivative
๐ก โ ๐, ๐
๐๐ฅ โก ๐ฅ ๐๐ก
๐ฆ=๐ฆ ๐ก , ๐ฆ! ๐ก =
๐ก โ ๐, ๐
๐๐ฆ โก ๐ฆ ๐๐ก
๐๐ฆ ๐ฆ! ๐ก ๐๐ก = ๐๐ฆ โ
๐๐ก = ๐๐ฆ = ๐๐ฅ ๐ฅ! ๐ก ๐๐ก ๐๐ฅ ๐๐ฅ ๐๐ก
๐ ๐ ๐ ๐๐ฆ ๐ ๐๐ฅ ๐ฅ ! ๐ก ๐๐ฅ ๐ฆ ! ๐ก โ ๐ฆ ! ๐ก ๐๐ฅ ๐ฅ ! ๐ก ๐ฅ ! ๐ก ๐๐ฅ ๐๐ก โ ๐ฆ ! ๐ก ๐๐ฅ ๐๐ก ๐! ๐ฆ ๐ ๐๐ฆ ๐ ๐ฆ! ๐ก = = = = ๐๐ฅ ! ๐๐ฅ ๐๐ฅ ๐๐ฅ ๐ฅ ! ๐ก ๐ฅ! ๐ก ! ๐ฅ! ๐ก ! ๐ ๐๐ฆ ๐ ๐๐ฅ ๐ ๐๐ฆ ๐ ๐ ๐๐ฆ ๐ ๐๐ฆ ๐ฅ ! ๐ก ๐๐ก ๐๐ฅ โ ๐ฆ ! ๐ก ๐๐ก ๐๐ฅ ๐ฅ ! ๐ก ๐๐ก ๐๐ฅ โ ๐ฆ ! ๐ก ๐๐ก 1 ๐ฅ ! ๐ก ๐๐ก ๐๐ฅ ๐๐ก = = = = ! ๐๐ฅ ! ! ! ! ! ! ๐ฅ ๐ก ๐ฅ ๐ก ๐ฅ ๐ก ๐ฅ ๐ก ๐ ๐๐ฆ ๐ ! ๐ฆ ๐๐ก ๐๐ฅ โด != ๐๐ฅ ๐๐ฅ ๐๐ก Trigonometric ๐ฆ ๐ฅ = ๐ cos ๐ ๐ฆ = ๐ sin ๐ ๐ฅ! + ๐ฆ! = ๐! ๐ = arctan ๐ฅ Circle ๐ฅโโ ! ๐ฆโ๐ ! ๐ฅโโ ๐ฆโ๐ + = 1 = cos ๐ ! + sin ๐ ! โ = cos ๐ โง = sin ๐ , ๐ โ 0, 2๐ ๐ ๐ ๐ ๐ Ellipse ๐ฅโโ ! ๐ฆโ๐ ! ๐ฅโโ ๐ฆโ๐ + = 1 = cos ๐ ! + sin ๐ ! โ = cos ๐ โง = sin ๐ , ๐ โ 0, 2๐ ๐ ๐ ๐ ๐
Polar Derivative
๐๐ฆ ๐ ๐๐ฆ ๐๐ ๐๐ ๐ sin ๐ ๐ ๐ cos ๐ + ๐ ! ๐ sin ๐ = = = ! ๐ ๐๐ฅ ๐๐ ๐ ๐ cos ๐ โ ๐ ๐ sin ๐ ๐๐ ๐๐ ๐ cos ๐
Polar Equations for Ellipse ๐ฅ! ๐ฆ! + = 1 ๐! ๐! ๐ฅ! ๐ฆ! + = 1 ๐! ๐! ๐ < 1
๐๐ ๐ ๐ = ๐ ยฑ ๐ cos ๐
0 โค ๐ < ๐
๐ = eccentricity, ๐ = diretrix ๐๐ ๐ ๐ = ๐ ยฑ ๐ sin ๐
Polar Equations for Hyperbola ๐ฅ! ๐ฆ! โ = 1 ๐! ๐!
๐๐ ๐ ๐ = ๐ ยฑ ๐ cos ๐ Polar Equations for Parabola ๐ = 1 ๐ ๐ =
๐ ๐ ยฑ cos ๐
๐ ! = ๐! โ ๐! ๐ ๐= ๐
๐ ! = ๐! + ๐! Foci ยฑ๐, 0 Vertices ยฑ๐, 0 ! Asymptotes ๐ฆ = ยฑ ! ๐ฅ ๐ ! = ๐! + ๐! Foci 0, ยฑ๐, Vertices 0, ยฑ๐, ! Asymptotes ๐ฆ = ยฑ ! ๐ฅ
๐ฆ! ๐ฅ! โ = 1 ๐! ๐!
๐ > 11
๐ ! = ๐! โ ๐! Foci ยฑ๐, 0 Vertices ยฑ๐, 0 ๐ ! = ๐! โ ๐! Foci 0, ยฑ๐, Vertices 0, ยฑ๐,
0 โค ๐ < ๐
๐ = eccentricity, ๐ = diretrix ๐๐ ๐ ๐ = ๐ ยฑ ๐ sin ๐
๐ = eccentricity, ๐ = diretrix ๐ ๐ =
๐ ๐ ยฑ sin ๐
๐ ! = ๐! + ๐! ๐ ๐= ๐
๐ฆ ! = 4๐๐ฅ, ๐ฅ ! = 4๐๐ฆ,
๐ = โ๐ ๐ = โ๐
Antiderivatives & Integration Basic Rules Power Rule for antiderivatives
1 ๐ฅ ! + ๐ถ โ ๐ โ โ1 ๐+1 ๐! โ ๐ฆ= + ๐ถ ln ๐
๐ฆ! = ๐ฅ! โ ๐ฆ =
Exponential
๐ฆ! = ๐!
1 โ ๐ฆ = ln ๐ฅ + ๐ถ ๐ฅ 1 1 ๐ฆ! = โ ๐ฆ = ln ๐๐ฅ + ๐ + ๐ถ ๐๐ฅ + ๐ ๐
Natural Log (case 1)
๐ฆ! =
Natural Log (case 2)
๐ข! ๐ฅ ๐ฆ = โ ๐ฆ = ln ๐ข ๐ฅ + ๐ถ ๐ข ๐ฅ
Natural Log (case 3)
!
Eulerโs Number (case 1)
1 !" ๐ + ๐ถ ๐ 1 โ ๐ฆ = ๐ !"!! + ๐ถ ๐
๐ฆ ! = ๐ !" โ ๐ฆ =
Eulerโs Number (case 2)
๐ฆ ! = ๐ !"!!
Eulerโs Number (case 3)
๐ฆ ! = ๐ข! ๐ฅ ๐ !
Anti-Chain-Rule Substitution Method
๐ฆ ! = ๐ ! ๐ ๐ฅ ๐! ๐ฅ โ ๐ฆ = ๐ ๐ ๐ฅ
!
โ ๐ฆ = ๐!
!
+ ๐ถ + ๐ถ
Riemann Sum for Area Approximation !
๐ ๐ฅ!โ ๐ฅ๐ฅ ,
๐ด โ lim
!โโ
!!!
!
๐ฅ๐ฅ =
๐โ๐ , ๐
๐ฅ! = ๐ + ๐ โ ๐ฅ๐ฅ !
๐ = ๐๐
๐=
!!!
!!!
!
!
๐๐ ๐ฅ! = ๐ !!!
!
!!!
!!!
!
!!!
๐! =
๐ ๐ฅ! !
๐ ๐ฅ! ยฑ ๐ ๐ฅ!
๐ ๐+1 2
=
!
๐ ๐ฅ! ยฑ !!!
!
!!!
๐ ๐+1 ๐ = 2 !
๐ ๐ฅ! !!!
๐ ๐ + 1 2๐ + 1 6 !
Area Approximation Rules Midpoint Rule ! !
Trapezoid Rule
๐โ๐ ๐ฅ! + ๐ฅ! ๐ฅ! + ๐ฅ! ๐ ๐ฅ ๐๐ฅ โ ๐ +๐ +โฏ ๐ 2 2
!
๐ ๐ฅ ๐๐ฅ โ !
๐โ๐ ๐ ๐ฅ! + 2๐ ๐ฅ! + 2๐ ๐ฅ! + โฏ + 2๐ ๐ฅ!!! + ๐ ๐ฅ! 2๐
The Integral Notation โซ !
๐(๐ฅ!โ ) ๐ฅ๐ฅ โก
lim
!โโ
!!!
Definite Integral Properties
!
๐ ๐ฅ ๐๐ฅ = ๐น ๐ โ ๐น ๐
๐ ๐๐ฅ = ๐ ๐ โ ๐
!
!
!
!
๐ ๐ฅ ๐๐ฅ = 0
!
๐๐ ๐ฅ ๐๐ฅ = ๐
!
!
!
๐ ๐ฅ ๐๐ฅ !
!
๐ ๐ฅ ๐๐ฅ = 0
!
๐ ๐ฅ ยฑ ๐ ๐ฅ ๐๐ฅ =
!!
!
โ ๐ โ๐ฅ = โ๐ ๐ฅ ! !!
๐
๐ ๐ฅ ๐๐ฅ =
!
!
๐ ๐ฅ ๐๐ฅ !
!
๐ ๐ฅ ๐๐ฅ + !
๐ ๐ฅ ๐๐ฅ โ
๐ ๐ฅ ๐๐ฅ
!
!
๐ ๐ฅ ๐๐ฅ = โ !
๐ ๐ฅ ๐๐ฅ ๐
even
NOTE: ๐ ๐ฅ โ
๐ ๐ฅ ๐๐ฅ โ
!
!
๐ ๐ฅ
โ ๐ โ๐ฅ = ๐ ๐ฅ
!
๐ ๐ฅ ๐๐ฅ ยฑ
odd
!
๐ ๐ฅ ๐๐ฅ = 2
๐(๐ฅ) ๐๐ฅ !
!
!
๐ ๐ฅ ๐๐ฅ !
Fundamental Theorems
Let ๐ ๐ฅ = ๐ข and ๐ ๐ฅ = ๐ฃ for the following: !
๐)
๐ฆ=
๐ ๐ก ๐๐ก โ
๐ฆ ! = ๐ ๐ฃ โ ๐ฃ ! โ ๐ ๐ข โ ๐ขโฒ
!
!
๐ฆ=
๐ฆ ! = ๐ ๐ฃ โ ๐ฃ ! โ ๐ ๐ โ ๐! = ๐ ๐ฃ โ ๐ฃ ! โ 0 = ๐ ๐ฃ โ ๐ฃ !
๐ ๐ก ๐๐ก โ !
!
๐ฆ=
๐ฆ ! = ๐ ๐ โ ๐ ! โ ๐ ๐ข โ ๐ข! = 0 โ ๐ ๐ข โ ๐ข! = โ๐ ๐ข โ ๐ขโฒ
๐ ๐ก ๐๐ก โ !
Limit Definition of a Definite Integral !
๐๐)
๐(๐ฅ!โ ) ๐ฅ๐ฅ
lim
!โโ
!!!
๐ฅ๐ฅ =
๐โ๐ , ๐
!
=
๐(๐ฅ) ๐๐ฅ = ๐น ๐ โ ๐น ๐ !
๐ฅ! = ๐ + ๐ โ ๐ฅ๐ฅ
Differential Equation (1st order)
๐๐ฆ = ๐ ! ๐ฅ โ ๐๐ฆ = ๐ ! ๐ฅ ๐๐ฅ โ ๐๐ฆ = ๐ ! ๐ฅ ๐๐ฅ ๐๐ฅ โ ๐ฆ + ๐! = ๐ ๐ฅ + ๐! โ ๐ฆ = ๐ ๐ฅ + ๐! โ ๐! = ๐ ๐ฅ + ๐! โก ๐ ๐ฅ + ๐ถ ๐ฆ! = ๐! ๐ฅ โ
Common Integrals ๐๐ฅ = ๐ฅ + ๐ถ
๐ ๐๐ฅ = ๐๐ฅ + ๐ถ
1 ๐ฅ ! ๐๐ฅ = ๐ฅ ! + ๐ถ 3
๐ฅ ! ๐๐ฅ =
1 ๐ฅ ๐๐ฅ = ๐ฅ ! + ๐ถ 2
1 ๐ฅ !!! + ๐ถ ๐+1
1 ๐๐ฅ = ln |๐ฅ| + ๐ถ ๐ฅ
โ ๐ โ โ1 1 !" ๐ + ๐ถ ๐
๐ ! ๐๐ฅ = ๐ ! + ๐ถ
๐ !" ๐๐ฅ =
1 ๐๐ฅ = ln ๐ฅ + 1 + ๐ถ ๐ฅ+1
1 1 ๐๐ฅ = ln ๐๐ฅ + ๐ + ๐ถ ๐๐ฅ + ๐ ๐
๐ ! ๐ขโฒ ๐๐ข = ๐ ! + ๐ถ
๐ข! ๐๐ข = ln ๐ข + ๐ถ ๐ข
๐ !"!! ๐๐ฅ =
1 !"!! ๐ + ๐ถ ๐
๐ ๐ข ๐ขโฒ ๐๐ข = ๐น ๐ข + ๐ถ !
๐ ๐ฅ =๐น ๐ โ๐น ๐ !
๐ข! cos ๐ข ๐๐ข = sin ๐ข + ๐ถ
๐ข! sin ๐ข ๐๐ข = โ cos ๐ข + ๐ถ
๐ข! sec ! ๐ข ๐๐ข = tan ๐ข + ๐ถ
๐ข! csc ๐ข sec ๐ข ๐๐ข = โ csc ๐ข + ๐ถ
๐ข! sec ๐ข tan ๐ข ๐๐ข = sec ๐ข + ๐ถ
๐ข! csc ! ๐ข ๐๐ข = โ cot ๐ข + ๐ถ
๐ข! 1 โ ๐ข!
๐๐ข = arcsin ๐ข + ๐ถ
โ๐ข! 1 โ ๐ข!
๐ข! ๐๐ข = arctan ๐ข + ๐ถ 1 + ๐ข!
๐๐ข = arccos ๐ข + ๐ถ
Definite Integral Rules Substitution
!
Integration by Parts
๐ ๐ ๐ฅ ๐! ๐ฅ ๐๐ฅ =
! !
! !
๐ ๐ข ๐๐ข ! !
๐ ๐ฅ ๐! ๐ฅ ๐๐ฅ = ๐ ๐ฅ ๐ ๐ฅ
!
Let ๐ข=๐ ๐ฅ ๐๐ข = ๐ ! ๐ฅ ๐๐ฅ Then !
๐ข ๐๐ฃ = ๐ข๐ฃ
!
! !
! !
!
โ
๐ ๐ฅ ๐ ! ๐ฅ ๐๐ฅ
!
๐๐ฃ = ๐! ๐ฅ ๐๐ฅ ๐ฃ=๐ ๐ฅ
!
โ
๐ฃ ๐๐ข !
Trig Substitution ๐! โ ๐ฅ !
๐! + ๐ฅ !
๐ฅ ! โ ๐!
1 โ sin! ๐ = cos ! ๐
1 + tan! ๐ = sec ! ๐
sec ! ๐ โ 1 = tan! ๐
๐ฅ = ๐ sin ๐ ๐ ๐ ๐โ โ , 2 2
๐ฅ = ๐ tan ๐ ๐ ๐ ๐โ โ , 2 2
๐ฅ = ๐ sec ๐
Trig Identity tan ๐ฅ ๐๐ฅ =
sin ๐ฅ ๐๐ฅ = โ cos ๐ฅ
๐ โ 0,
1 โ
โ sin ๐ฅ ๐๐ฅ, cos ๐ฅ
๐ ln ๐ข ๐ฅ ๐๐ฅ
= โ ln cos ๐ฅ + ๐ถ = ln Partial Fractions ๐ ๐ฅ ๐ด ๐ต = + ๐ฅ ๐ฅ+1 ๐ฅ ๐ฅ+1 ๐ ๐ฅ ๐ด ๐ต๐ฅ + ๐ถ = + ! ! ๐ฅ ๐ฅ +1 ๐ฅ ๐ฅ +1
=
๐ 3๐ โจ ๐ โ ๐, 2 2
1 ๐๐ข ๐ข ๐๐ฅ
1 + ๐ถ = ln sec ๐ฅ + ๐ถ cos ๐ฅ
๐ ๐ฅ ๐ฅ! ๐ฅ + 1 ๐ ๐ฅ ๐ฅ ๐ฅ! + 1
!
=
๐ด ๐ต ๐ถ + !+ ๐ฅ ๐ฅ ๐ฅ+1
=
๐ด ๐ต๐ฅ + ๐ถ ๐ท๐ฅ + ๐ธ + ! + ! ๐ฅ ๐ฅ +1 ๐ฅ +1 !
Integration Steps
Ask yourself the following questions: 1. Is the integrand in integratable form? 2. Can I perform a function or trig-identity manipulation? 3. Should I use U-Substitution or Trig-Substitution? 4. Integration by Parts? 5. Partial fraction decomposition?
For a definite integral always check to see if the function is defined on the bounds Improper Integration Infinite Bounds !โ
!
๐ ๐ฅ ๐๐ฅ = !โ
Undefined Bounds
!โ
๐ ๐ฅ ๐๐ฅ + !โ
!
๐ ๐ฅ ๐๐ฅ = lim
!! โ!โ ! !
!
! !
!
๐ ๐ฅ ๐๐ฅ, ๐ฅ โ ๐, ๐ โ lim! !! โ๐
!!
๐ ๐ฅ ๐๐ฅ + lim
๐ ๐ฅ ๐๐ฅ + lim! !! โ!
!!
!! โ โ !
!!
๐ ๐ฅ ๐๐ฅ
๐ ๐ฅ ๐๐ฅ
!
Areas, Volumes, and Curve Length Area with respect to an axis Cartesian ๐ฅ โ ๐๐ฅ๐๐
๐ฆ โ ๐๐ฅ๐๐
!
๐ด= !
!
๐ ๐ฅ ๐๐ฅ โ ๐ ๐ฅ โฅ 0 โ! โ ๐, ๐
๐ด= !
๐ ๐ฆ ๐๐ฆ โ ๐ ๐ฆ โฅ 0 โ! โ ๐, ๐
Area between curves Given two curves ๐ โง ๐ set them equal to each other to find all x-coordinates of intersection. !
๐ด= !
๐ ๐ฅ โ ๐ ๐ฅ ๐๐ฅ โ ๐ ๐ฅ โฅ ๐ ๐ฅ โ! โ ๐, ๐
! !!!
๐ด=
๐ ๐ฅ โ ๐ ๐ฅ ๐๐ฅ = !!
or !! !!
๐ ๐ฅ โ ๐ ๐ฅ ๐๐ฅ +
!! !!
๐ ๐ฅ โ ๐ ๐ฅ ๐๐ฅ + โฏ
Polar Area 1 ๐ด= 2
!!
!
๐ ๐
!!
1 ๐๐ โง ๐ด = 2
!!
๐
๐
!
!
โ ๐ ๐
๐๐
!!
Volume about an axis (Disk Method) ๐ฅ โ ๐๐ฅ๐๐ !
๐=๐
๐ ๐ฅ !
!
๐ฆ โ ๐๐ฅ๐๐ !
๐๐ฅ โ ๐ ๐ฅ โฅ 0 โ! โ ๐, ๐
๐=๐
๐ ๐ฆ !
!
๐๐ฆ โ ๐ ๐ฆ โฅ 0 โ! โ ๐, ๐
Volume between curves (Washer Method) Given two curves ๐ โง ๐ set them equal to each other to find all x-coordinates of intersection. !
๐=๐ Cylindrical Shell Method Rotate about ๐ฆ โ ๐๐ฅ๐๐
!
๐ ๐ฅ
โ ๐ ๐ฅ
!
!
Rotate about ๐ฅ โ ๐๐ฅ๐๐
!
๐=
!
2๐๐ฅ๐ ๐ฅ ๐๐ฅ
๐=
!
Arc Length Cartesian 1 โ ๐! ๐ฅ !
2๐๐ฆ๐ ๐ฆ ๐๐ฆ !
Polar
!
๐ฟ=
๐๐ฅ โ ๐ ๐ฅ โฅ ๐ ๐ฅ โ! โ ๐, ๐
!
๐๐ฅ
๐ฟ=
!!
!!
Parametric ๐ ๐
!
โ ๐! ๐
!
๐๐
๐ฟ=
!!
!!
๐ฅ! ๐ก
!
โ ๐ฆ! ๐ก
!
๐๐ก
Surface Area Cartesian
Polar
๐!!!"#$ =
๐!!!"#$ =
!
๐๐ =
2๐๐ ๐ฅ ๐๐, !
1โ
๐ฅ
! ๐๐ฅ
!
๐!!!"#$ = ๐๐ =
๐!
2๐๐ ๐ฆ ๐๐, !
๐!
1โ
๐ฆ
! ๐๐ฆ
๐๐ =
!
๐! = ๐
โ ๐! ๐
!
๐๐ =
! ๐๐
2๐๐ ๐ sin ๐ ๐๐
!
โ ๐! ๐
๐๐ =
! ๐๐
!
๐ฅ=
1 ๐ด
๐ ๐ฅ ๐๐ฅ, ๐ ๐ฅ โฅ 0 โ ๐, ๐
!!
โ ๐ฆ! ๐ก
!
2๐๐ฅ ๐ก ๐๐,
!!
๐ฅ! ๐ก
!
โ ๐ฆ! ๐ก
! ๐๐
๐๐ฅ
!
๐ = ๐๐ด = ๐
!
1 โด๐ฆ= 2๐ด
๐ฅ ๐ ๐ฅ โ ๐ ๐ฅ ๐๐ฅ, ๐ โฅ ๐ โ ๐, ๐
๐! =
๐ฅ๐ ๐ฅ ๐๐ฅ !
!
๐ ๐ฅ ๐๐ฅ, ๐ ๐ฅ โฅ 0 โ ๐, ๐
1 2๐ด
!
๐ ๐ฅ
!
๐๐ฅ
๐ ๐ฅ
!
โ ๐ ๐ฅ
! !
!
๐๐ฅ, ๐ โฅ ๐ โ ๐, ๐
!
Sequences vs Series Series
โ
๐! = ๐! + ๐! + ๐! + โฏ
๐! = ๐! , ๐! , ๐! , โฆ
๐! Converges
! ๐๐
!
Sequence
!!!
Sequence Tests lim ๐! = ๐ฟ
!โโ
!
!
!
๐ ๐ฅ
!
1 โด๐ฅ= ๐ด
2๐๐ฆ ๐ก ๐๐,
!!
๐-coordinate ๐! ๐ฆ= ๐
!
๐ = ๐๐ด = ๐
!!
๐ฅ! ๐ก
๐!!!"#$ =
!!
๐ ๐! = 2
๐ฅ๐ ๐ฅ ๐๐ฅ
๐!!!"#$ =
2๐๐ ๐ cos ๐ ๐๐
!
!!
๐ ๐
Physics Applications Center of Mass with Constant Density ๐-coordinate ๐! ๐ฅ= ๐
Parametric
!!
๐ ๐
๐!!!"#$ = ๐๐ =
!!
๐! Diverges
lim ๐! = ยฑโ โจ ๐ท๐๐ธ
!โโ
Series Tests Test Geometric P-Series Integral Test
โ
Form ๐๐ !!!
!!! โ
!!! โ
1 ๐! ๐!
Condition
Diverges ๐ โฅ ๐
๐ โค ๐
โ
๐ ๐ ๐
๐ = โ
๐
๐. ๐. ๐๐ = โ๐ ๐ = Comparison
๐!
๐๐ , ๐๐ ๐๐ซ๐ ๐ฉ๐จ๐ฌ๐ข๐ญ๐ข๐ฏ๐
!!!
Limit Comparison Alternating Series Ratio Root
๐๐ , ๐๐ ๐๐ซ๐ ๐ฉ๐จ๐ฌ๐ข๐ญ๐ข๐ฏ๐ ๐! ๐๐ !!! ๐ฅ๐ข๐ฆ = ๐, ๐ > ๐ ๐โโ ๐๐ โ โ1 !!! ๐! ๐๐ > ๐ !!! โ
If
๐ ๐๐
๐๐ โฅ ๐๐ โ๐ โ ๐๐ ๐๐ข๐ฏ๐๐ซ๐ ๐๐ฌ
๐๐ โค ๐๐ โ๐ โ ๐๐ ๐๐จ๐ง๐ฏ๐๐ซ๐ ๐๐ฌ
๐ฎ๐๐ ๐๐ข๐ฏ๐๐ซ๐ ๐๐ฌ
๐ฎ๐๐ ๐๐จ๐ง๐ฏ๐๐ซ๐ ๐๐ฌ
Does not show divergence
๐๐!๐ โค ๐๐ โ๐ & ๐ฅ๐ข๐ฆ ๐๐ = ๐ ๐โโ ๐๐!๐ ๐ฅ๐ข๐ฆ < ๐ ๐โโ ๐๐
๐! !!! โ
๐!
๐ฅ๐ข๐ฆ
๐โโ
๐จ๐ซ = โ
Test for Absolute/Conditional Convergence
โ
๐! ๐๐จ๐ง๐ฏ๐๐ซ๐ ๐๐ฌ ๐ญ๐ก๐๐ง !!!
๐ ๐๐
๐๐!๐ >๐ ๐โโ ๐๐ ๐จ๐ซ = โ ๐ ๐ฅ๐ข๐ฆ ๐๐ > ๐
Absolutely Convergent
๐ฅ๐ข๐ฆ
๐โโ
๐
|๐๐ | < ๐
Conditionally Convergent โ
|๐! | Converges !!!
๐ ๐ ๐
๐ = ๐ ๐
โ
!!!
โ
๐ > ๐
โ
๐๐ is positive and decreasing on [๐, โ)
!!!
โ
Converges ๐ ๐ 0 Repeated Solution ๐ ! โ 4๐๐ = 0 Complex Solution ๐ฅ = ๐ผ ยฑ ๐ฝ๐ if ๐ ! โ 4๐๐ < 0
Complete the Square
!
๐ฆ = ๐๐ฅ + ๐๐ฅ + ๐
โ
log ! ๐ =
๐ ๐ฆ=๐ ๐ฅ+ 2๐
!
๐! +๐โ 4๐
Other Formulas Distance Formula ๐ท=
Midpoint Formula !
๐ฅ โ ๐ฅ!
+ ๐ฆ โ ๐ฆ! !
๐=
Equation of a Line ๐ ๐๐๐๐ = ๐ =
๐ฅ + ๐ฅ! ๐ฆ + ๐ฆ! , 2 2
๐ฆ = ๐๐ฅ + ๐ ๐ฆ! โ ๐ฆ! = ๐ ๐ฅ! โ ๐ฅ! ๐ด๐ฅ + ๐ต๐ฆ = ๐ถ ๐ฆ = ๐๐ฅ ! + ๐๐ฅ + ๐ ๐ฆ = ๐ ๐ฅ โ โ ! + ๐ ! ๐ฅ โ โ + ๐ฆ โ ๐ ! = ๐!
๐ฆ! โ ๐ฆ! ๐ฅ! โ ๐ฅ!
Equation of Parabola Vertex: โ, ๐ Equation of Circle Center: โ, ๐ Radius: ๐ Equation of Ellipse
๐ฅโโ ๐!
!
+
Right Point: โ + ๐, ๐
๐ฆโ๐ ๐!
!
= 1
Left Point: โ โ ๐, ๐ Top Point: โ, ๐ + ๐
Bottom Point: โ, ๐ โ ๐ Equation of Hyperbola Center: โ, ๐ ! Slope: ยฑ !
๐ฅโโ ๐!
!
๐ฆโ๐ โ ๐!
!
= 1
!
Asymptotes: ๐ฆ = ยฑ ! ๐ฅ โ โ + ๐ Vertices: โ + ๐, ๐ , โ โ ๐, ๐ ! ๐ฆโ๐ ๐ฅโโ โ ๐! ๐!
Equation of Hyperbola Center: โ, ๐ ! Slope: ยฑ !
!
= 1
!
Asymptotes: ๐ฆ = ยฑ ! ๐ฅ โ โ + ๐ Vertices: โ, ๐ + ๐ , โ, ๐ โ ๐
Areas Square: ๐ด = ๐ฟ! = ๐ ! Rectangle: ๐ด = ๐ฟ โ ๐ Circle: ๐ด = ๐ โ ๐ ! ! ! Ellipse: ๐ด = ๐ โ ๐๐ Triangle: ๐ด = ! ๐ โ โ Trapezoid: ๐ด = ! ๐ + ๐ โ โ !" Parallelogram: ๐ โ โ Rhombus: ๐ด = ! , ๐ and ๐ are the diagonals Surface Areas Cube: ๐ด! = 6๐ฟ! = 6๐ ! Box: ๐ด! = 2(๐ฟ๐ + ๐๐ป + ๐ป๐ฟ) Sphere: ๐ด! = 4๐๐ ! Cone: ๐ด! = ๐๐ ๐ + โ! + ๐ ! Cylinder: 2๐๐โ + 2๐๐ ! Volumes ! Cube: ๐ = ๐ฟ! = ๐ ! Box: ๐ = ๐ฟ โ ๐ โ ๐ป Sphere: ๐ = ! ๐ โ ๐ ! ! ! Cone: ๐ = ! ๐ โ ๐ ! โ Ellipsoid: ๐ = ! ๐ โ ๐๐๐, ๐, ๐, ๐ are the radii Domain Restrictions ๐ข ๐ฆ= , ๐ฃโ 0 ๐ฆ = ๐ข, ๐ขโฅ0 ๐ฆ = ln ๐ข , ๐ข > 0 ๐ฃ ! ๐ฆ = ๐! , none ๐ฆ = ๐ข none if ๐ is odd, ๐ข โฅ 0 if ๐ is even
Right Triangle
๐ฅ! + ๐ฆ! = ๐! โ cos ๐ผ = tan ๐ผ = sin ๐ผ =
๐=
๐ฅ! + ๐ฆ!
๐ฅ ๐
๐ฆ cos ๐ฝ = ๐
๐ฆ ๐ฅ
๐ฅ tan ๐ฝ = ๐ฆ
๐ฆ ๐
๐ฅ sin ๐ฝ = ๐
๐ฅ = ๐ cos ๐ผ ๐ฆ = ๐ sin ๐ผ ๐ฆ ๐ฆ ๐ผ = arctan = tan!! ๐ฅ ๐ฅ Reciprocal Identities 1 sin ๐ = csc ๐ 1 csc ๐ = sec ๐ sin ๐ tan ๐ = cos ๐
๐ฆ = ๐ cos ๐ฝ ๐ฅ = ๐ sin ๐ฝ ๐ฝ = arctan
๐ฅ ๐ฅ = tan!! ๐ฆ ๐ฆ
csc ๐ =
1 sin ๐
tan ๐ =
1 cot ๐
sec ๐ =
1 cos ๐
cot ๐ =
1 tan ๐
cot ๐ =
cos ๐ sin ๐
Double Angle Formulas sin 2๐ = 2 sin ๐ cos ๐ cos 2๐ = 1 โ 2 sin! ๐ cos 2๐ = cos ! ๐ โ sin! ๐ cos 2๐ = 2 cos ! ๐ โ 1 ! !"# ! cos 2๐ = 1 โ 2 sin! ๐ tan 2๐ = !!!"#! !Officia Half Angle Formulas 1 1 1 โ cos(2๐) sin! ๐ = 1 โ cos 2๐ cos ! ๐ = 1 + ๐๐๐ 2๐ tan! ๐ = 2 2 1 + cos(2๐) Sum and Difference Formulas sin ๐ผ ยฑ ๐ฝ = sin ๐ผ cos ๐ฝ ยฑ cos ๐ผ sin ๐ฝ cos(๐ผ ยฑ ๐ฝ) = cos ๐ผ cos ๐ฝ โ sin ๐ผ sin ๐ฝ tan ๐ผ ยฑ tan ๐ฝ tan ๐ผ ยฑ ๐ฝ = 1 โ tan ๐ผ ๐ก๐๐๐ฝ Product to Sum Formulas 1 1 sin ๐ผ sin ๐ฝ = [cos ๐ผ โ ๐ฝ โ cos(๐ผ + ๐ฝ)] cos ๐ผ cos ๐ฝ = [cos ๐ผ โ ๐ฝ + cos(๐ผ + ๐ฝ)] 2 2 1 1 sin ๐ผ cos ๐ฝ = [sin ๐ผ + ๐ฝ + sin ๐ผ โ ๐ฝ ] cos ๐ผ sin ๐ฝ = sin ๐ผ + ๐ฝ โ sin ๐ผ โ ๐ฝ 2 2 Sum to Product Formulas ๐ผ+๐ฝ ๐ผโ๐ฝ ๐ผ+๐ฝ ๐ผโ๐ฝ sin ๐ผ + sin ๐ฝ = 2 sin cos sin ๐ผ โ sin ๐ฝ = 2 cos sin 2 2 2 2 ๐ผ+๐ฝ ๐ผโ๐ฝ ๐ผ+๐ฝ ๐ผโ๐ฝ cos ๐ผ + cos ๐ฝ = 2 cos cos cos ๐ผ โ cos ๐ฝ = โ2 sin sin 2 2 2 2
Unit Circle
Note: I edit, produce and design my resources without assistance. On occasion, I may overlook a typo; if you come across a typo, please email me via
[email protected] Copyright ยฉ WeSolveThem.com | WESOLVETHEM LLC Published: July 2017, U.S.A.