Integral Calculus Cheat Sheet

Report 3 Downloads 192 Views


Integral Calculus Cheat Sheet By The WeSolveThem.com Team Simplicity is the ultimate sophistication. Leonardo da Vinci







Table of Contents Parametric and Polar Operations ....................................................................................................... 5 Notations ........................................................................................................................................................................................................ 5 First Derivative ............................................................................................................................................................................................ 5 Second Derivative ....................................................................................................................................................................................... 5 Trigonometric .............................................................................................................................................................................................. 5 Circle ................................................................................................................................................................................................................. 5 Ellipse ............................................................................................................................................................................................................... 5 Polar Derivative ........................................................................................................................................................................................... 6 Polar Equations for Ellipse ..................................................................................................................................................................... 6 Polar Equations for Hyperbola ............................................................................................................................................................. 6 Polar Equations for Parabola ................................................................................................................................................................ 6 Antiderivatives & Integration ............................................................................................................. 7 Basic Rules .................................................................................................................................................................................................... 7 Riemann Sum for Area Approximation ............................................................................................................................................ 7 Area Approximation Rules ..................................................................................................................................................................... 8 Midpoint Rule ................................................................................................................................................................................................ 8 Trapezoid Rule ............................................................................................................................................................................................. 8 The Integral Notation โˆซ ..................................................................................................................... 8 Definite Integral Properties ................................................................................................................................................................... 8 Fundamental Theorems .......................................................................................................................................................................... 9 Limit Definition of a Definite Integral ............................................................................................................................................... 9 Differential Equation (1st order) .......................................................................................................................................................... 9 Common Integrals ................................................................................................................................................................................... 10 Definite Integral Rules .......................................................................................................................................................................... 10 Substitution ................................................................................................................................................................................................ 10 Integration by Parts ................................................................................................................................................................................ 10 Trig Substitution ...................................................................................................................................................................................... 11 Trig Identity ............................................................................................................................................................................................... 11 Partial Fractions ...................................................................................................................................................................................... 11 Integration Steps .............................................................................................................................. 12 Improper Integration ............................................................................................................................................................................ 12 Infinite Bounds .......................................................................................................................................................................................... 12 Undefined Bounds .................................................................................................................................................................................... 12 Areas, Volumes, and Curve Length ................................................................................................... 12 Area with respect to an axis ............................................................................................................................................................... 12 Cartesian ...................................................................................................................................................................................................... 12 Area between curves ............................................................................................................................................................................. 12 Polar Area ................................................................................................................................................................................................... 13 Volume about an axis (Disk Method) ............................................................................................................................................. 13 Volume between curves (Washer Method) ................................................................................................................................. 13 Cylindrical Shell Method ...................................................................................................................................................................... 13 Arc Length .................................................................................................................................................................................................. 13 Surface Area .............................................................................................................................................................................................. 14 Physics Applications .............................................................................................................................................................................. 14 Center of Mass with Constant Density ............................................................................................................................................. 14 Sequences vs Series .......................................................................................................................... 14

Sequence Tests ................................................................................................................................. 14 Series Tests ...................................................................................................................................... 15 Taylor series .............................................................................................................................................................................................. 16 Maclaurin Series ...................................................................................................................................................................................... 16 Power Series .............................................................................................................................................................................................. 16 Radius/Interval of Converges ............................................................................................................................................................ 16 3D Calculus ....................................................................................................................................... 17 Magnitude ................................................................................................................................................................................................... 17 Unit Vectors ............................................................................................................................................................................................... 17 Dot/Cross Product .................................................................................................................................................................................. 17 Dot .................................................................................................................................................................................................................. 17 Properties .................................................................................................................................................................................................... 17 Cross ............................................................................................................................................................................................................... 17 Properties .................................................................................................................................................................................................... 18 Angles Between Vectors ....................................................................................................................................................................... 18 Projections ................................................................................................................................................................................................. 18 Areas/Volume ........................................................................................................................................................................................... 18 Triangle ........................................................................................................................................................................................................ 18 Parallelogram ............................................................................................................................................................................................ 18 Parallelepiped ............................................................................................................................................................................................ 18 Line ................................................................................................................................................................................................................ 18 Line from tip to tip ................................................................................................................................................................................... 18 Equation of a Plane ................................................................................................................................................................................. 19 Vector Functions ..................................................................................................................................................................................... 19 Limit ............................................................................................................................................................................................................... 19 Derivative .................................................................................................................................................................................................... 19 Definite Integral ....................................................................................................................................................................................... 19 Indefinite Integral .................................................................................................................................................................................... 19 Differentiation Rules .............................................................................................................................................................................. 19 Arc length ................................................................................................................................................................................................... 19 Tangents ...................................................................................................................................................................................................... 20 Unit Tangent Vector ............................................................................................................................................................................... 20 Curvature 1 ................................................................................................................................................................................................. 20 Curvature 2 (vector function) ............................................................................................................................................................. 20 Curvature 3 (single variable) ............................................................................................................................................................ 20 Curvature 4 (parametric) ..................................................................................................................................................................... 20 Normal Vector ........................................................................................................................................................................................... 20 Binormal Vector ....................................................................................................................................................................................... 20 Tangential and Normal Components (acceleration) ............................................................................................................... 21 Physics Notations .................................................................................................................................................................................... 21 Position ......................................................................................................................................................................................................... 21 Velocity ......................................................................................................................................................................................................... 21 Speed .............................................................................................................................................................................................................. 21 Acceleration ................................................................................................................................................................................................ 21 Curvature ..................................................................................................................................................................................................... 21 Tangential Component (acceleration) ........................................................................................................................................... 21 Normal Component (acceleration) .................................................................................................................................................. 21 Acceleration ................................................................................................................................................................................................ 21 Note: .............................................................................................................................................................................................................. 21 Dot Product of Velocity and Acceleration ..................................................................................................................................... 21 Tangential Acceleration ........................................................................................................................................................................ 21

Normal Acceleration ............................................................................................................................................................................... 21 Frenet-Serret Formulas ......................................................................................................................................................................... 22

Partial Derivatives ............................................................................................................................ 22 Mixed Partial ............................................................................................................................................................................................. 22 Tangent Plane ........................................................................................................................................................................................... 22 Chain Rule .................................................................................................................................................................................................. 22 PreCalculus Review .......................................................................................................................... 23 Arithmetic ................................................................................................................................................................................................... 23 Exponential ................................................................................................................................................................................................ 23 Radicals ....................................................................................................................................................................................................... 23 Fractions ..................................................................................................................................................................................................... 23 Logarithmic ................................................................................................................................................................................................ 24 Other Formulas/Equations ................................................................................................................................................................. 24 Areas ............................................................................................................................................................................................................. 26 Surface Areas ............................................................................................................................................................................................ 26 Volumes ....................................................................................................................................................................................................... 26 Domain Restrictions .............................................................................................................................................................................. 26 Right Triangle ........................................................................................................................................................................................... 27 Reciprocal Identities ............................................................................................................................................................................... 27 Double Angle Formulas ........................................................................................................................................................................ 28 Half Angle Formulas ............................................................................................................................................................................... 28 Sum and Difference Formulas ............................................................................................................................................................ 28 Product to Sum Formulas ..................................................................................................................................................................... 28 Sum to Product Formulas ..................................................................................................................................................................... 28 Unit Circle ........................................................................................................................................ 29



Parametric and Polar Operations Notations ๐‘ฅ=๐‘ฅ ๐‘ก , ๐‘ฅ! ๐‘ก = First Derivative

Second Derivative

๐‘ก โˆˆ ๐‘Ž, ๐‘

๐‘‘๐‘ฅ โ‰ก ๐‘ฅ ๐‘‘๐‘ก

๐‘ฆ=๐‘ฆ ๐‘ก , ๐‘ฆ! ๐‘ก =

๐‘ก โˆˆ ๐‘Ž, ๐‘

๐‘‘๐‘ฆ โ‰ก ๐‘ฆ ๐‘‘๐‘ก

๐‘‘๐‘ฆ ๐‘ฆ! ๐‘ก ๐‘‘๐‘ก = ๐‘‘๐‘ฆ โ‹… ๐‘‘๐‘ก = ๐‘‘๐‘ฆ = ๐‘‘๐‘ฅ ๐‘ฅ! ๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ก

๐‘‘ ๐‘‘ ๐‘‘ ๐‘‘๐‘ฆ ๐‘‘ ๐‘‘๐‘ฅ ๐‘ฅ ! ๐‘ก ๐‘‘๐‘ฅ ๐‘ฆ ! ๐‘ก โˆ’ ๐‘ฆ ! ๐‘ก ๐‘‘๐‘ฅ ๐‘ฅ ! ๐‘ก ๐‘ฅ ! ๐‘ก ๐‘‘๐‘ฅ ๐‘‘๐‘ก โ€“ ๐‘ฆ ! ๐‘ก ๐‘‘๐‘ฅ ๐‘‘๐‘ก ๐‘‘! ๐‘ฆ ๐‘‘ ๐‘‘๐‘ฆ ๐‘‘ ๐‘ฆ! ๐‘ก = = = = ๐‘‘๐‘ฅ ! ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘ฅ ! ๐‘ก ๐‘ฅ! ๐‘ก ! ๐‘ฅ! ๐‘ก ! ๐‘‘ ๐‘‘๐‘ฆ ๐‘‘ ๐‘‘๐‘ฅ ๐‘‘ ๐‘‘๐‘ฆ ๐‘‘ ๐‘‘ ๐‘‘๐‘ฆ ๐‘‘ ๐‘‘๐‘ฆ ๐‘ฅ ! ๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ฅ โˆ’ ๐‘ฆ ! ๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ฅ ๐‘ฅ ! ๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ฅ โˆ’ ๐‘ฆ ! ๐‘ก ๐‘‘๐‘ก 1 ๐‘ฅ ! ๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ฅ ๐‘‘๐‘ก = = = = ! ๐‘‘๐‘ฅ ! ! ! ! ! ! ๐‘ฅ ๐‘ก ๐‘ฅ ๐‘ก ๐‘ฅ ๐‘ก ๐‘ฅ ๐‘ก ๐‘‘ ๐‘‘๐‘ฆ ๐‘‘ ! ๐‘ฆ ๐‘‘๐‘ก ๐‘‘๐‘ฅ โˆด != ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ก Trigonometric ๐‘ฆ ๐‘ฅ = ๐‘Ÿ cos ๐œƒ ๐‘ฆ = ๐‘Ÿ sin ๐œƒ ๐‘ฅ! + ๐‘ฆ! = ๐‘Ÿ! ๐œƒ = arctan ๐‘ฅ Circle ๐‘ฅโˆ’โ„Ž ! ๐‘ฆโˆ’๐‘˜ ! ๐‘ฅโˆ’โ„Ž ๐‘ฆโˆ’๐‘˜ + = 1 = cos ๐œƒ ! + sin ๐œƒ ! โ‡’ = cos ๐œƒ โˆง = sin ๐œƒ , ๐œƒ โˆˆ 0, 2๐œ‹ ๐‘Ÿ ๐‘Ÿ ๐‘Ÿ ๐‘Ÿ Ellipse ๐‘ฅโˆ’โ„Ž ! ๐‘ฆโˆ’๐‘˜ ! ๐‘ฅโˆ’โ„Ž ๐‘ฆโˆ’๐‘˜ + = 1 = cos ๐œƒ ! + sin ๐œƒ ! โ‡’ = cos ๐œƒ โˆง = sin ๐œƒ , ๐œƒ โˆˆ 0, 2๐œ‹ ๐‘Ž ๐‘ ๐‘Ž ๐‘

Polar Derivative

๐‘‘๐‘ฆ ๐‘‘ ๐‘‘๐‘ฆ ๐‘‘๐œƒ ๐‘‘๐œƒ ๐‘Ÿ sin ๐œƒ ๐‘Ÿ ๐œƒ cos ๐œƒ + ๐‘Ÿ ! ๐œƒ sin ๐œƒ = = = ! ๐‘‘ ๐‘‘๐‘ฅ ๐‘‘๐‘Ÿ ๐‘Ÿ ๐œƒ cos ๐œƒ โˆ’ ๐‘Ÿ ๐œƒ sin ๐œƒ ๐‘‘๐œƒ ๐‘‘๐œƒ ๐‘Ÿ cos ๐œƒ

Polar Equations for Ellipse ๐‘ฅ! ๐‘ฆ! + = 1 ๐‘Ž! ๐‘! ๐‘ฅ! ๐‘ฆ! + = 1 ๐‘! ๐‘Ž! ๐‘’ < 1

๐‘’๐‘‘ ๐‘Ÿ ๐œƒ = ๐‘Ž ยฑ ๐‘’ cos ๐œƒ

0 โ‰ค ๐‘Ž < ๐‘

๐‘’ = eccentricity, ๐‘‘ = diretrix ๐‘’๐‘‘ ๐‘Ÿ ๐œƒ = ๐‘Ž ยฑ ๐‘’ sin ๐œƒ

Polar Equations for Hyperbola ๐‘ฅ! ๐‘ฆ! โˆ’ = 1 ๐‘Ž! ๐‘!

๐‘’๐‘‘ ๐‘Ÿ ๐œƒ = ๐‘Ž ยฑ ๐‘’ cos ๐œƒ Polar Equations for Parabola ๐‘’ = 1 ๐‘Ÿ ๐œƒ =

๐‘‘ ๐‘Ž ยฑ cos ๐œƒ

๐‘ ! = ๐‘Ž! โˆ’ ๐‘! ๐‘ ๐‘’= ๐‘Ž

๐‘ ! = ๐‘Ž! + ๐‘! Foci ยฑ๐‘, 0 Vertices ยฑ๐‘Ž, 0 ! Asymptotes ๐‘ฆ = ยฑ ! ๐‘ฅ ๐‘ ! = ๐‘Ž! + ๐‘! Foci 0, ยฑ๐‘, Vertices 0, ยฑ๐‘Ž, ! Asymptotes ๐‘ฆ = ยฑ ! ๐‘ฅ

๐‘ฆ! ๐‘ฅ! โˆ’ = 1 ๐‘Ž! ๐‘!

๐‘’ > 11

๐‘ ! = ๐‘Ž! โˆ’ ๐‘! Foci ยฑ๐‘, 0 Vertices ยฑ๐‘Ž, 0 ๐‘ ! = ๐‘Ž! โˆ’ ๐‘! Foci 0, ยฑ๐‘, Vertices 0, ยฑ๐‘Ž,

0 โ‰ค ๐‘Ž < ๐‘

๐‘’ = eccentricity, ๐‘‘ = diretrix ๐‘’๐‘‘ ๐‘Ÿ ๐œƒ = ๐‘Ž ยฑ ๐‘’ sin ๐œƒ

๐‘’ = eccentricity, ๐‘‘ = diretrix ๐‘Ÿ ๐œƒ =

๐‘‘ ๐‘Ž ยฑ sin ๐œƒ

๐‘ ! = ๐‘Ž! + ๐‘! ๐‘ ๐‘’= ๐‘Ž

๐‘ฆ ! = 4๐‘๐‘ฅ, ๐‘ฅ ! = 4๐‘๐‘ฆ,

๐‘‘ = โˆ’๐‘ ๐‘‘ = โˆ’๐‘



Antiderivatives & Integration Basic Rules Power Rule for antiderivatives

1 ๐‘ฅ ! + ๐ถ โ‡” ๐‘› โ‰  โˆ’1 ๐‘›+1 ๐‘Ž! โ‡’ ๐‘ฆ= + ๐ถ ln ๐‘Ž

๐‘ฆ! = ๐‘ฅ! โ‡’ ๐‘ฆ =

Exponential

๐‘ฆ! = ๐‘Ž!

1 โ‡’ ๐‘ฆ = ln ๐‘ฅ + ๐ถ ๐‘ฅ 1 1 ๐‘ฆ! = โ‡’ ๐‘ฆ = ln ๐‘Ž๐‘ฅ + ๐‘ + ๐ถ ๐‘Ž๐‘ฅ + ๐‘ ๐‘Ž

Natural Log (case 1)

๐‘ฆ! =

Natural Log (case 2)

๐‘ข! ๐‘ฅ ๐‘ฆ = โ‡’ ๐‘ฆ = ln ๐‘ข ๐‘ฅ + ๐ถ ๐‘ข ๐‘ฅ

Natural Log (case 3)

!

Eulerโ€™s Number (case 1)

1 !" ๐‘’ + ๐ถ ๐‘Ž 1 โ‡’ ๐‘ฆ = ๐‘’ !"!! + ๐ถ ๐‘Ž

๐‘ฆ ! = ๐‘’ !" โ‡’ ๐‘ฆ =

Eulerโ€™s Number (case 2)

๐‘ฆ ! = ๐‘’ !"!!

Eulerโ€™s Number (case 3)

๐‘ฆ ! = ๐‘ข! ๐‘ฅ ๐‘’ !

Anti-Chain-Rule Substitution Method

๐‘ฆ ! = ๐‘“ ! ๐‘” ๐‘ฅ ๐‘”! ๐‘ฅ โ‡’ ๐‘ฆ = ๐‘“ ๐‘” ๐‘ฅ



!

โ‡’ ๐‘ฆ = ๐‘’!

!

+ ๐ถ + ๐ถ



Riemann Sum for Area Approximation !

๐‘“ ๐‘ฅ!โˆ— ๐›ฅ๐‘ฅ ,

๐ด โ‰ˆ lim

!โ†’โˆž



!!!

!

๐›ฅ๐‘ฅ =

๐‘โˆ’๐‘Ž , ๐‘›

๐‘ฅ! = ๐‘Ž + ๐‘– โˆ™ ๐›ฅ๐‘ฅ !

๐‘ = ๐‘๐‘›

๐‘–=

!!!

!!!

!

!

๐‘๐‘“ ๐‘ฅ! = ๐‘ !!!

!

!!!

!!!

!

!!!



๐‘–! =

๐‘“ ๐‘ฅ! !

๐‘“ ๐‘ฅ! ยฑ ๐‘” ๐‘ฅ!

๐‘› ๐‘›+1 2

=

!

๐‘“ ๐‘ฅ! ยฑ !!!

!

!!!

๐‘› ๐‘›+1 ๐‘– = 2 !

๐‘” ๐‘ฅ! !!!

๐‘› ๐‘› + 1 2๐‘› + 1 6 !



Area Approximation Rules Midpoint Rule ! !

Trapezoid Rule

๐‘โˆ’๐‘Ž ๐‘ฅ! + ๐‘ฅ! ๐‘ฅ! + ๐‘ฅ! ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ โ‰ˆ ๐‘“ +๐‘“ +โ‹ฏ ๐‘› 2 2

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ โ‰ˆ !



๐‘โˆ’๐‘Ž ๐‘“ ๐‘ฅ! + 2๐‘“ ๐‘ฅ! + 2๐‘“ ๐‘ฅ! + โ‹ฏ + 2๐‘“ ๐‘ฅ!!! + ๐‘“ ๐‘ฅ! 2๐‘›

The Integral Notation โˆซ !

๐‘“(๐‘ฅ!โˆ— ) ๐›ฅ๐‘ฅ โ‰ก

lim

!โ†’โˆž



!!!

Definite Integral Properties

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ๐น ๐‘ โˆ’ ๐น ๐‘Ž

๐‘ ๐‘‘๐‘ฅ = ๐‘ ๐‘ โˆ’ ๐‘Ž

!

!

!

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = 0

!

๐‘๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘

!

!

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ !

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = 0

!

๐‘“ ๐‘ฅ ยฑ ๐‘” ๐‘ฅ ๐‘‘๐‘ฅ =

!!

!

โ‡” ๐‘“ โˆ’๐‘ฅ = โˆ’๐‘“ ๐‘ฅ ! !!

๐’Œ

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ =

!

!

๐‘” ๐‘ฅ ๐‘‘๐‘ฅ !

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ + !

๐‘” ๐‘ฅ ๐‘‘๐‘ฅ โ‹…

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ

!

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = โˆ’ !

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ ๐’Œ

even

NOTE: ๐‘“ ๐‘ฅ โ‹… ๐‘” ๐‘ฅ ๐‘‘๐‘ฅ โ‰ 

!

!

๐‘“ ๐‘ฅ

โ‡” ๐‘“ โˆ’๐‘ฅ = ๐‘“ ๐‘ฅ

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ ยฑ

odd

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = 2



๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ !



!



!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ !

Fundamental Theorems



Let ๐‘“ ๐‘ฅ = ๐‘ข and ๐‘” ๐‘ฅ = ๐‘ฃ for the following: !

๐‘–)

๐‘ฆ=

๐‘“ ๐‘ก ๐‘‘๐‘ก โ‡’

๐‘ฆ ! = ๐‘“ ๐‘ฃ โˆ™ ๐‘ฃ ! โˆ’ ๐‘“ ๐‘ข โˆ™ ๐‘ขโ€ฒ

!



!

๐‘ฆ=

๐‘ฆ ! = ๐‘“ ๐‘ฃ โˆ™ ๐‘ฃ ! โˆ’ ๐‘“ ๐‘Ž โˆ™ ๐‘Ž! = ๐‘“ ๐‘ฃ โˆ™ ๐‘ฃ ! โˆ’ 0 = ๐‘“ ๐‘ฃ โˆ™ ๐‘ฃ !

๐‘“ ๐‘ก ๐‘‘๐‘ก โ‡’ !



!

๐‘ฆ=

๐‘ฆ ! = ๐‘“ ๐‘ โˆ™ ๐‘ ! โˆ’ ๐‘“ ๐‘ข โˆ™ ๐‘ข! = 0 โˆ’ ๐‘“ ๐‘ข โˆ™ ๐‘ข! = โˆ’๐‘“ ๐‘ข โˆ™ ๐‘ขโ€ฒ

๐‘“ ๐‘ก ๐‘‘๐‘ก โ‡’ !



Limit Definition of a Definite Integral !

๐‘–๐‘–)

๐‘“(๐‘ฅ!โˆ— ) ๐›ฅ๐‘ฅ

lim

!โ†’โˆž

!!!

๐›ฅ๐‘ฅ =

๐‘โˆ’๐‘Ž , ๐‘›

!

=

๐‘“(๐‘ฅ) ๐‘‘๐‘ฅ = ๐น ๐‘ โˆ’ ๐น ๐‘Ž !

๐‘ฅ! = ๐‘Ž + ๐‘– โˆ™ ๐›ฅ๐‘ฅ

Differential Equation (1st order)

๐‘‘๐‘ฆ = ๐‘“ ! ๐‘ฅ โ‡’ ๐‘‘๐‘ฆ = ๐‘“ ! ๐‘ฅ ๐‘‘๐‘ฅ โ‡’ ๐‘‘๐‘ฆ = ๐‘“ ! ๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ฅ โ‡’ ๐‘ฆ + ๐‘! = ๐‘“ ๐‘ฅ + ๐‘! โ‡’ ๐‘ฆ = ๐‘“ ๐‘ฅ + ๐‘! โˆ’ ๐‘! = ๐‘“ ๐‘ฅ + ๐‘! โ‰ก ๐‘“ ๐‘ฅ + ๐ถ ๐‘ฆ! = ๐‘“! ๐‘ฅ โ‡’



Common Integrals ๐‘‘๐‘ฅ = ๐‘ฅ + ๐ถ

๐‘˜ ๐‘‘๐‘ฅ = ๐‘˜๐‘ฅ + ๐ถ

1 ๐‘ฅ ! ๐‘‘๐‘ฅ = ๐‘ฅ ! + ๐ถ 3

๐‘ฅ ! ๐‘‘๐‘ฅ =

1 ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘ฅ ! + ๐ถ 2

1 ๐‘ฅ !!! + ๐ถ ๐‘›+1

1 ๐‘‘๐‘ฅ = ln |๐‘ฅ| + ๐ถ ๐‘ฅ

โ‡” ๐‘› โ‰  โˆ’1 1 !" ๐‘’ + ๐ถ ๐‘Ž

๐‘’ ! ๐‘‘๐‘ฅ = ๐‘’ ! + ๐ถ

๐‘’ !" ๐‘‘๐‘ฅ =

1 ๐‘‘๐‘ฅ = ln ๐‘ฅ + 1 + ๐ถ ๐‘ฅ+1

1 1 ๐‘‘๐‘ฅ = ln ๐‘Ž๐‘ฅ + ๐‘ + ๐ถ ๐‘Ž๐‘ฅ + ๐‘ ๐‘Ž

๐‘’ ! ๐‘ขโ€ฒ ๐‘‘๐‘ข = ๐‘’ ! + ๐ถ

๐‘ข! ๐‘‘๐‘ข = ln ๐‘ข + ๐ถ ๐‘ข

๐‘’ !"!! ๐‘‘๐‘ฅ =

1 !"!! ๐‘’ + ๐ถ ๐‘Ž

๐‘“ ๐‘ข ๐‘ขโ€ฒ ๐‘‘๐‘ข = ๐น ๐‘ข + ๐ถ !

๐‘“ ๐‘ฅ =๐น ๐‘ โˆ’๐น ๐‘Ž !

๐‘ข! cos ๐‘ข ๐‘‘๐‘ข = sin ๐‘ข + ๐ถ

๐‘ข! sin ๐‘ข ๐‘‘๐‘ข = โˆ’ cos ๐‘ข + ๐ถ

๐‘ข! sec ! ๐‘ข ๐‘‘๐‘ข = tan ๐‘ข + ๐ถ

๐‘ข! csc ๐‘ข sec ๐‘ข ๐‘‘๐‘ข = โˆ’ csc ๐‘ข + ๐ถ

๐‘ข! sec ๐‘ข tan ๐‘ข ๐‘‘๐‘ข = sec ๐‘ข + ๐ถ

๐‘ข! csc ! ๐‘ข ๐‘‘๐‘ข = โˆ’ cot ๐‘ข + ๐ถ

๐‘ข! 1 โˆ’ ๐‘ข!

๐‘‘๐‘ข = arcsin ๐‘ข + ๐ถ

โˆ’๐‘ข! 1 โˆ’ ๐‘ข!

๐‘ข! ๐‘‘๐‘ข = arctan ๐‘ข + ๐ถ 1 + ๐‘ข!

๐‘‘๐‘ข = arccos ๐‘ข + ๐ถ

Definite Integral Rules Substitution

!

Integration by Parts

๐‘“ ๐‘” ๐‘ฅ ๐‘”! ๐‘ฅ ๐‘‘๐‘ฅ =

! !

! !

๐‘“ ๐‘ข ๐‘‘๐‘ข ! !

๐‘“ ๐‘ฅ ๐‘”! ๐‘ฅ ๐‘‘๐‘ฅ = ๐‘“ ๐‘ฅ ๐‘” ๐‘ฅ

!

Let ๐‘ข=๐‘“ ๐‘ฅ ๐‘‘๐‘ข = ๐‘“ ! ๐‘ฅ ๐‘‘๐‘ฅ Then !

๐‘ข ๐‘‘๐‘ฃ = ๐‘ข๐‘ฃ



!

! !

! !

!

โˆ’

๐‘” ๐‘ฅ ๐‘“ ! ๐‘ฅ ๐‘‘๐‘ฅ

!

๐‘‘๐‘ฃ = ๐‘”! ๐‘ฅ ๐‘‘๐‘ฅ ๐‘ฃ=๐‘” ๐‘ฅ

!

โˆ’

๐‘ฃ ๐‘‘๐‘ข !

Trig Substitution ๐‘Ž! โˆ’ ๐‘ฅ !

๐‘Ž! + ๐‘ฅ !

๐‘ฅ ! โˆ’ ๐‘Ž!

1 โˆ’ sin! ๐œƒ = cos ! ๐œƒ

1 + tan! ๐œƒ = sec ! ๐œƒ

sec ! ๐œƒ โˆ’ 1 = tan! ๐œƒ

๐‘ฅ = ๐‘Ž sin ๐œƒ ๐œ‹ ๐œ‹ ๐œƒโˆˆ โˆ’ , 2 2

๐‘ฅ = ๐‘Ž tan ๐œƒ ๐œ‹ ๐œ‹ ๐œƒโˆˆ โˆ’ , 2 2

๐‘ฅ = ๐‘Ž sec ๐œƒ

Trig Identity tan ๐‘ฅ ๐‘‘๐‘ฅ =

sin ๐‘ฅ ๐‘‘๐‘ฅ = โˆ’ cos ๐‘ฅ

๐œƒ โˆˆ 0,



1 โ‹… โˆ’ sin ๐‘ฅ ๐‘‘๐‘ฅ, cos ๐‘ฅ

๐‘‘ ln ๐‘ข ๐‘ฅ ๐‘‘๐‘ฅ

= โˆ’ ln cos ๐‘ฅ + ๐ถ = ln Partial Fractions ๐‘ ๐‘ฅ ๐ด ๐ต = + ๐‘ฅ ๐‘ฅ+1 ๐‘ฅ ๐‘ฅ+1 ๐‘ ๐‘ฅ ๐ด ๐ต๐‘ฅ + ๐ถ = + ! ! ๐‘ฅ ๐‘ฅ +1 ๐‘ฅ ๐‘ฅ +1



=

๐œ‹ 3๐œ‹ โˆจ ๐œƒ โˆˆ ๐œ‹, 2 2

1 ๐‘‘๐‘ข ๐‘ข ๐‘‘๐‘ฅ

1 + ๐ถ = ln sec ๐‘ฅ + ๐ถ cos ๐‘ฅ

๐‘ ๐‘ฅ ๐‘ฅ! ๐‘ฅ + 1 ๐‘ ๐‘ฅ ๐‘ฅ ๐‘ฅ! + 1

!

=

๐ด ๐ต ๐ถ + !+ ๐‘ฅ ๐‘ฅ ๐‘ฅ+1

=

๐ด ๐ต๐‘ฅ + ๐ถ ๐ท๐‘ฅ + ๐ธ + ! + ! ๐‘ฅ ๐‘ฅ +1 ๐‘ฅ +1 !



Integration Steps

Ask yourself the following questions: 1. Is the integrand in integratable form? 2. Can I perform a function or trig-identity manipulation? 3. Should I use U-Substitution or Trig-Substitution? 4. Integration by Parts? 5. Partial fraction decomposition?



For a definite integral always check to see if the function is defined on the bounds Improper Integration Infinite Bounds !โˆž

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = !โˆž

Undefined Bounds

!โˆž

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ + !โˆž

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = lim

!! โ†’!โˆž ! !

!

! !

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ, ๐‘ฅ โˆˆ ๐‘Ž, ๐‘ โ‡’ lim! !! โ†’๐‘Ž

!!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ + lim

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ + lim! !! โ†’!



!!

!! โ†’ โˆž !

!!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ

!

Areas, Volumes, and Curve Length Area with respect to an axis Cartesian ๐‘ฅ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘ 

๐‘ฆ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘ 

!

๐ด= !

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ โ‡” ๐‘“ ๐‘ฅ โ‰ฅ 0 โˆ€! โˆˆ ๐‘Ž, ๐‘

๐ด= !

๐‘” ๐‘ฆ ๐‘‘๐‘ฆ โ‡” ๐‘” ๐‘ฆ โ‰ฅ 0 โˆ€! โˆˆ ๐‘, ๐‘‘

Area between curves Given two curves ๐‘“ โˆง ๐‘” set them equal to each other to find all x-coordinates of intersection. !

๐ด= !

๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ ๐‘‘๐‘ฅ โ‡” ๐‘“ ๐‘ฅ โ‰ฅ ๐‘” ๐‘ฅ โˆ€! โˆˆ ๐‘Ž, ๐‘

! !!!

๐ด=

๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ ๐‘‘๐‘ฅ = !!



or !! !!

๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ ๐‘‘๐‘ฅ +

!! !!

๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ ๐‘‘๐‘ฅ + โ‹ฏ

Polar Area 1 ๐ด= 2

!!

!

๐‘Ÿ ๐œƒ

!!

1 ๐‘‘๐œƒ โˆง ๐ด = 2

!!

๐‘… ๐œƒ

!

!

โˆ’ ๐‘Ÿ ๐œƒ

๐‘‘๐œƒ

!!



Volume about an axis (Disk Method) ๐‘ฅ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘  !

๐‘‰=๐œ‹

๐‘“ ๐‘ฅ !

!

๐‘ฆ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘  !

๐‘‘๐‘ฅ โ‡” ๐‘“ ๐‘ฅ โ‰ฅ 0 โˆ€! โˆˆ ๐‘Ž, ๐‘

๐‘‰=๐œ‹

๐‘” ๐‘ฆ !

!

๐‘‘๐‘ฆ โ‡” ๐‘” ๐‘ฆ โ‰ฅ 0 โˆ€! โˆˆ ๐‘, ๐‘‘

Volume between curves (Washer Method) Given two curves ๐‘“ โˆง ๐‘” set them equal to each other to find all x-coordinates of intersection. !

๐‘‰=๐œ‹ Cylindrical Shell Method Rotate about ๐‘ฆ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘ 

!

๐‘“ ๐‘ฅ

โˆ’ ๐‘” ๐‘ฅ

!

!

Rotate about ๐‘ฅ โˆ’ ๐‘Ž๐‘ฅ๐‘–๐‘ 

!

๐‘‰=

!

2๐œ‹๐‘ฅ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ

๐‘‰=

!



Arc Length Cartesian 1 โˆ’ ๐‘“! ๐‘ฅ !



2๐œ‹๐‘ฆ๐‘” ๐‘ฆ ๐‘‘๐‘ฆ !

Polar

!

๐ฟ=

๐‘‘๐‘ฅ โ‡” ๐‘“ ๐‘ฅ โ‰ฅ ๐‘” ๐‘ฅ โˆ€! โˆˆ ๐‘Ž, ๐‘

!

๐‘‘๐‘ฅ

๐ฟ=

!!

!!

Parametric ๐‘Ÿ ๐œƒ

!

โˆ’ ๐‘Ÿ! ๐œƒ

!

๐‘‘๐œƒ

๐ฟ=

!!

!!

๐‘ฅ! ๐‘ก

!

โˆ’ ๐‘ฆ! ๐‘ก

!

๐‘‘๐‘ก

Surface Area Cartesian

Polar

๐‘†!!!"#$ =

๐‘†!!!"#$ =

!

๐‘‘๐‘™ =

2๐œ‹๐‘“ ๐‘ฅ ๐‘‘๐‘™, !

1โˆ’

๐‘ฅ

! ๐‘‘๐‘ฅ

!

๐‘†!!!"#$ = ๐‘‘๐‘™ =

๐‘“!

2๐œ‹๐‘” ๐‘ฆ ๐‘‘๐‘™, !

๐‘”!

1โˆ’

๐‘ฆ

! ๐‘‘๐‘ฆ

๐‘‘๐‘™ =

!

๐‘€! = ๐œŒ

โˆ’ ๐‘Ÿ! ๐œƒ

!

๐‘‘๐‘™ =

! ๐‘‘๐œƒ

2๐œ‹๐‘Ÿ ๐œƒ sin ๐œƒ ๐‘‘๐‘™

!

โˆ’ ๐‘Ÿ! ๐œƒ

๐‘‘๐‘™ =

! ๐‘‘๐œƒ

!

๐‘ฅ=

1 ๐ด

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ, ๐‘“ ๐‘ฅ โ‰ฅ 0 โˆˆ ๐‘Ž, ๐‘

!!

โˆ’ ๐‘ฆ! ๐‘ก

!

2๐œ‹๐‘ฅ ๐‘ก ๐‘‘๐‘™,

!!

๐‘ฅ! ๐‘ก

!

โˆ’ ๐‘ฆ! ๐‘ก

! ๐‘‘๐œƒ

๐‘‘๐‘ฅ

!

๐‘š = ๐œŒ๐ด = ๐œŒ

!

1 โˆด๐‘ฆ= 2๐ด

๐‘ฅ ๐‘“ ๐‘ฅ โˆ’ ๐‘” ๐‘ฅ ๐‘‘๐‘ฅ, ๐‘“ โ‰ฅ ๐‘” โˆˆ ๐‘Ž, ๐‘

๐‘€! =

๐‘ฅ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ !

!

๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ, ๐‘“ ๐‘ฅ โ‰ฅ 0 โˆˆ ๐‘Ž, ๐‘

1 2๐ด

!

๐‘“ ๐‘ฅ

!

๐‘‘๐‘ฅ

๐‘“ ๐‘ฅ

!

โˆ’ ๐‘” ๐‘ฅ

! !

!

๐‘‘๐‘ฅ, ๐‘“ โ‰ฅ ๐‘” โˆˆ ๐‘Ž, ๐‘

!

Sequences vs Series Series

โˆž

๐‘Ž! = ๐‘Ž! + ๐‘Ž! + ๐‘Ž! + โ‹ฏ

๐‘Ž! = ๐‘Ž! , ๐‘Ž! , ๐‘Ž! , โ€ฆ

๐‘Ž! Converges

! ๐‘‘๐œƒ

!

Sequence

!!!

Sequence Tests lim ๐‘Ž! = ๐ฟ

!โ†’โˆž



!

!





!

๐‘“ ๐‘ฅ

!

1 โˆด๐‘ฅ= ๐ด

2๐œ‹๐‘ฆ ๐‘ก ๐‘‘๐‘™,

!!

๐’š-coordinate ๐‘€! ๐‘ฆ= ๐‘š

!

๐‘š = ๐œŒ๐ด = ๐œŒ

!!

๐‘ฅ! ๐‘ก

๐‘†!!!"#$ =

!!

๐œŒ ๐‘€! = 2

๐‘ฅ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ

๐‘†!!!"#$ =

2๐œ‹๐‘Ÿ ๐œƒ cos ๐œƒ ๐‘‘๐‘™

!

!!

๐‘Ÿ ๐œƒ

Physics Applications Center of Mass with Constant Density ๐’™-coordinate ๐‘€! ๐‘ฅ= ๐‘š

Parametric

!!

๐‘Ÿ ๐œƒ

๐‘†!!!"#$ = ๐‘‘๐‘™ =

!!

๐‘Ž! Diverges

lim ๐‘Ž! = ยฑโˆž โˆจ ๐ท๐‘๐ธ

!โ†’โˆž



Series Tests Test Geometric P-Series Integral Test

โˆž

Form ๐‘Ž๐‘Ÿ !!!

!!! โˆž

!!! โˆž

1 ๐‘›! ๐‘Ž!

Condition

Diverges ๐’“ โ‰ฅ ๐Ÿ



๐’‘ โ‰ค ๐Ÿ

โˆž

๐’‡ ๐’™ ๐’…๐’™ = โˆž

๐Ÿ

๐’†. ๐’ˆ. ๐’‚๐’ = โ‡’๐’‡ ๐’™ = Comparison

๐‘Ž!

๐’‚๐’ , ๐’ƒ๐’ ๐š๐ซ๐ž ๐ฉ๐จ๐ฌ๐ข๐ญ๐ข๐ฏ๐ž

!!!

Limit Comparison Alternating Series Ratio Root

๐’‚๐’ , ๐’ƒ๐’ ๐š๐ซ๐ž ๐ฉ๐จ๐ฌ๐ข๐ญ๐ข๐ฏ๐ž ๐‘Ž! ๐’‚๐’ !!! ๐ฅ๐ข๐ฆ = ๐’Œ, ๐’Œ > ๐ŸŽ ๐’โ†’โˆž ๐’ƒ๐’ โˆž โˆ’1 !!! ๐‘! ๐’„๐’ > ๐ŸŽ !!! โˆž

If

๐Ÿ ๐’™๐Ÿ

๐’‚๐’ โ‰ฅ ๐’ƒ๐’ โˆ€๐’ โ‡” ๐’ƒ๐’ ๐๐ข๐ฏ๐ž๐ซ๐ ๐ž๐ฌ

๐’‚๐’ โ‰ค ๐’ƒ๐’ โˆ€๐’ โ‡” ๐’ƒ๐’ ๐œ๐จ๐ง๐ฏ๐ž๐ซ๐ ๐ž๐ฌ

๐œฎ๐’ƒ๐’ ๐ƒ๐ข๐ฏ๐ž๐ซ๐ ๐ž๐ฌ

๐œฎ๐’ƒ๐’ ๐‚๐จ๐ง๐ฏ๐ž๐ซ๐ ๐ž๐ฌ

Does not show divergence

๐’„๐’!๐Ÿ โ‰ค ๐’„๐’ โˆ€๐’ & ๐ฅ๐ข๐ฆ ๐’„๐’ = ๐ŸŽ ๐’โ†’โˆž ๐’‚๐’!๐Ÿ ๐ฅ๐ข๐ฆ < ๐Ÿ ๐’โ†’โˆž ๐’‚๐’

๐‘Ž! !!! โˆž

๐‘Ž!

๐ฅ๐ข๐ฆ



๐’โ†’โˆž

๐จ๐ซ = โˆž

Test for Absolute/Conditional Convergence

โˆž

๐‘Ž! ๐‚๐จ๐ง๐ฏ๐ž๐ซ๐ ๐ž๐ฌ ๐ญ๐ก๐ž๐ง !!!

๐Ÿ ๐’๐Ÿ

๐’‚๐’!๐Ÿ >๐Ÿ ๐’โ†’โˆž ๐’‚๐’ ๐จ๐ซ = โˆž ๐’ ๐ฅ๐ข๐ฆ ๐’‚๐’ > ๐Ÿ



Absolutely Convergent

๐ฅ๐ข๐ฆ

๐’โ†’โˆž

๐’

|๐’‚๐’ | < ๐Ÿ

Conditionally Convergent โˆž

|๐‘Ž! | Converges !!!

๐’‡ ๐’™ ๐’…๐’™ = ๐’Œ ๐Ÿ



โˆž

!!!

โˆž

๐’‘ > ๐Ÿ

โˆž

๐’‚๐’ is positive and decreasing on [๐Ÿ, โˆž)

!!!

โˆž

Converges ๐’‚ ๐’“ 0 Repeated Solution ๐‘ ! โˆ’ 4๐‘Ž๐‘ = 0 Complex Solution ๐‘ฅ = ๐›ผ ยฑ ๐›ฝ๐‘– if ๐‘ ! โˆ’ 4๐‘Ž๐‘ < 0

Complete the Square

!

๐‘ฆ = ๐‘Ž๐‘ฅ + ๐‘๐‘ฅ + ๐‘

โ‡’



log ! ๐‘ =

๐‘ ๐‘ฆ=๐‘Ž ๐‘ฅ+ 2๐‘Ž

!

๐‘! +๐‘โˆ’ 4๐‘Ž

Other Formulas Distance Formula ๐ท=

Midpoint Formula !

๐‘ฅ โˆ’ ๐‘ฅ!

+ ๐‘ฆ โˆ’ ๐‘ฆ! !

๐‘€=

Equation of a Line ๐‘ ๐‘™๐‘œ๐‘๐‘’ = ๐‘š =

๐‘ฅ + ๐‘ฅ! ๐‘ฆ + ๐‘ฆ! , 2 2

๐‘ฆ = ๐‘š๐‘ฅ + ๐‘ ๐‘ฆ! โˆ’ ๐‘ฆ! = ๐‘š ๐‘ฅ! โˆ’ ๐‘ฅ! ๐ด๐‘ฅ + ๐ต๐‘ฆ = ๐ถ ๐‘ฆ = ๐‘Ž๐‘ฅ ! + ๐‘๐‘ฅ + ๐‘ ๐‘ฆ = ๐‘Ž ๐‘ฅ โˆ’ โ„Ž ! + ๐‘˜ ! ๐‘ฅ โˆ’ โ„Ž + ๐‘ฆ โˆ’ ๐‘˜ ! = ๐‘Ÿ!

๐‘ฆ! โˆ’ ๐‘ฆ! ๐‘ฅ! โˆ’ ๐‘ฅ!

Equation of Parabola Vertex: โ„Ž, ๐‘˜ Equation of Circle Center: โ„Ž, ๐‘˜ Radius: ๐‘Ÿ Equation of Ellipse

๐‘ฅโˆ’โ„Ž ๐‘Ž!

!

+

Right Point: โ„Ž + ๐‘Ž, ๐‘˜

๐‘ฆโˆ’๐‘˜ ๐‘!

!

= 1

Left Point: โ„Ž โˆ’ ๐‘Ž, ๐‘˜ Top Point: โ„Ž, ๐‘˜ + ๐‘

Bottom Point: โ„Ž, ๐‘˜ โˆ’ ๐‘ Equation of Hyperbola Center: โ„Ž, ๐‘˜ ! Slope: ยฑ !

๐‘ฅโˆ’โ„Ž ๐‘Ž!

!

๐‘ฆโˆ’๐‘˜ โˆ’ ๐‘!

!

= 1

!

Asymptotes: ๐‘ฆ = ยฑ ! ๐‘ฅ โˆ’ โ„Ž + ๐‘˜ Vertices: โ„Ž + ๐‘Ž, ๐‘˜ , โ„Ž โˆ’ ๐‘Ž, ๐‘˜ ! ๐‘ฆโˆ’๐‘˜ ๐‘ฅโˆ’โ„Ž โˆ’ ๐‘Ž! ๐‘!

Equation of Hyperbola Center: โ„Ž, ๐‘˜ ! Slope: ยฑ !

!

= 1

!

Asymptotes: ๐‘ฆ = ยฑ ! ๐‘ฅ โˆ’ โ„Ž + ๐‘˜ Vertices: โ„Ž, ๐‘˜ + ๐‘ , โ„Ž, ๐‘˜ โˆ’ ๐‘



Areas Square: ๐ด = ๐ฟ! = ๐‘Š ! Rectangle: ๐ด = ๐ฟ โˆ™ ๐‘Š Circle: ๐ด = ๐œ‹ โˆ™ ๐‘Ÿ ! ! ! Ellipse: ๐ด = ๐œ‹ โˆ™ ๐‘Ž๐‘ Triangle: ๐ด = ! ๐‘ โˆ™ โ„Ž Trapezoid: ๐ด = ! ๐‘Ž + ๐‘ โˆ™ โ„Ž !" Parallelogram: ๐‘ โˆ™ โ„Ž Rhombus: ๐ด = ! , ๐‘ and ๐‘ž are the diagonals Surface Areas Cube: ๐ด! = 6๐ฟ! = 6๐‘Š ! Box: ๐ด! = 2(๐ฟ๐‘Š + ๐‘Š๐ป + ๐ป๐ฟ) Sphere: ๐ด! = 4๐œ‹๐‘Ÿ ! Cone: ๐ด! = ๐œ‹๐‘Ÿ ๐‘Ÿ + โ„Ž! + ๐‘Ÿ ! Cylinder: 2๐œ‹๐‘Ÿโ„Ž + 2๐œ‹๐‘Ÿ ! Volumes ! Cube: ๐‘‰ = ๐ฟ! = ๐‘Š ! Box: ๐‘‰ = ๐ฟ โˆ™ ๐‘Š โˆ™ ๐ป Sphere: ๐‘‰ = ! ๐œ‹ โˆ™ ๐‘Ÿ ! ! ! Cone: ๐‘‰ = ! ๐œ‹ โˆ™ ๐‘Ÿ ! โ„Ž Ellipsoid: ๐‘‰ = ! ๐œ‹ โˆ™ ๐‘Ž๐‘๐‘, ๐‘Ž, ๐‘, ๐‘ are the radii Domain Restrictions ๐‘ข ๐‘ฆ= , ๐‘ฃโ‰ 0 ๐‘ฆ = ๐‘ข, ๐‘ขโ‰ฅ0 ๐‘ฆ = ln ๐‘ข , ๐‘ข > 0 ๐‘ฃ ! ๐‘ฆ = ๐‘Ž! , none ๐‘ฆ = ๐‘ข none if ๐‘› is odd, ๐‘ข โ‰ฅ 0 if ๐‘› is even



Right Triangle

๐‘ฅ! + ๐‘ฆ! = ๐‘Ÿ! โ‡” cos ๐›ผ = tan ๐›ผ = sin ๐›ผ =

๐‘Ÿ=

๐‘ฅ! + ๐‘ฆ!

๐‘ฅ ๐‘Ÿ

๐‘ฆ cos ๐›ฝ = ๐‘Ÿ

๐‘ฆ ๐‘ฅ

๐‘ฅ tan ๐›ฝ = ๐‘ฆ

๐‘ฆ ๐‘Ÿ

๐‘ฅ sin ๐›ฝ = ๐‘Ÿ

๐‘ฅ = ๐‘Ÿ cos ๐›ผ ๐‘ฆ = ๐‘Ÿ sin ๐›ผ ๐‘ฆ ๐‘ฆ ๐›ผ = arctan = tan!! ๐‘ฅ ๐‘ฅ Reciprocal Identities 1 sin ๐œƒ = csc ๐œƒ 1 csc ๐œƒ = sec ๐œƒ sin ๐œƒ tan ๐œƒ = cos ๐œƒ





๐‘ฆ = ๐‘Ÿ cos ๐›ฝ ๐‘ฅ = ๐‘Ÿ sin ๐›ฝ ๐›ฝ = arctan

๐‘ฅ ๐‘ฅ = tan!! ๐‘ฆ ๐‘ฆ

csc ๐œƒ =

1 sin ๐œƒ

tan ๐œƒ =

1 cot ๐œƒ

sec ๐œƒ =

1 cos ๐œƒ

cot ๐œƒ =

1 tan ๐œƒ

cot ๐œƒ =

cos ๐œƒ sin ๐œƒ

Double Angle Formulas sin 2๐œƒ = 2 sin ๐œƒ cos ๐œƒ cos 2๐œƒ = 1 โˆ’ 2 sin! ๐œƒ cos 2๐œƒ = cos ! ๐œƒ โˆ’ sin! ๐œƒ cos 2๐œƒ = 2 cos ! ๐œƒ โˆ’ 1 ! !"# ! cos 2๐œƒ = 1 โˆ’ 2 sin! ๐œƒ tan 2๐œƒ = !!!"#! !Officia Half Angle Formulas 1 1 1 โˆ’ cos(2๐œƒ) sin! ๐œƒ = 1 โˆ’ cos 2๐œƒ cos ! ๐œƒ = 1 + ๐‘๐‘œ๐‘  2๐œƒ tan! ๐œƒ = 2 2 1 + cos(2๐œƒ) Sum and Difference Formulas sin ๐›ผ ยฑ ๐›ฝ = sin ๐›ผ cos ๐›ฝ ยฑ cos ๐›ผ sin ๐›ฝ cos(๐›ผ ยฑ ๐›ฝ) = cos ๐›ผ cos ๐›ฝ โˆ“ sin ๐›ผ sin ๐›ฝ tan ๐›ผ ยฑ tan ๐›ฝ tan ๐›ผ ยฑ ๐›ฝ = 1 โˆ“ tan ๐›ผ ๐‘ก๐‘Ž๐‘›๐›ฝ Product to Sum Formulas 1 1 sin ๐›ผ sin ๐›ฝ = [cos ๐›ผ โˆ’ ๐›ฝ โˆ’ cos(๐›ผ + ๐›ฝ)] cos ๐›ผ cos ๐›ฝ = [cos ๐›ผ โˆ’ ๐›ฝ + cos(๐›ผ + ๐›ฝ)] 2 2 1 1 sin ๐›ผ cos ๐›ฝ = [sin ๐›ผ + ๐›ฝ + sin ๐›ผ โˆ’ ๐›ฝ ] cos ๐›ผ sin ๐›ฝ = sin ๐›ผ + ๐›ฝ โˆ’ sin ๐›ผ โˆ’ ๐›ฝ 2 2 Sum to Product Formulas ๐›ผ+๐›ฝ ๐›ผโˆ’๐›ฝ ๐›ผ+๐›ฝ ๐›ผโˆ’๐›ฝ sin ๐›ผ + sin ๐›ฝ = 2 sin cos sin ๐›ผ โˆ’ sin ๐›ฝ = 2 cos sin 2 2 2 2 ๐›ผ+๐›ฝ ๐›ผโˆ’๐›ฝ ๐›ผ+๐›ฝ ๐›ผโˆ’๐›ฝ cos ๐›ผ + cos ๐›ฝ = 2 cos cos cos ๐›ผ โˆ’ cos ๐›ฝ = โˆ’2 sin sin 2 2 2 2



Unit Circle





Note: I edit, produce and design my resources without assistance. On occasion, I may overlook a typo; if you come across a typo, please email me via [email protected] Copyright ยฉ WeSolveThem.com | WESOLVETHEM LLC Published: July 2017, U.S.A.