Multivariable Calculus Cheat Sheet By The WeSolveThem.com Team Simplicity is the ultimate sophistication. Leonardo da Vinci
Table of Contents 3D Calculus ......................................................................................................................................... 6 Magnitude ...................................................................................................................................................................................................... 6 Unit Vectors .................................................................................................................................................................................................. 6 Dot/Cross Product ..................................................................................................................................................................................... 6 Dot ..................................................................................................................................................................................................................... 6 Properties ....................................................................................................................................................................................................... 6 Cross .................................................................................................................................................................................................................. 6 Properties ....................................................................................................................................................................................................... 7 Angles Between Vectors .......................................................................................................................................................................... 7 Projections .................................................................................................................................................................................................... 7 Areas/Volume .............................................................................................................................................................................................. 7 Triangle ........................................................................................................................................................................................................... 7 Parallelogram ............................................................................................................................................................................................... 7 Parallelepiped ............................................................................................................................................................................................... 7 Line ................................................................................................................................................................................................................... 7 Line from tip to tip ...................................................................................................................................................................................... 7 Equation of a Plane .................................................................................................................................................................................... 8 Vector Functions ........................................................................................................................................................................................ 8 Limit .................................................................................................................................................................................................................. 8 Derivative ....................................................................................................................................................................................................... 8 Definite Integral .......................................................................................................................................................................................... 8 Indefinite Integral ....................................................................................................................................................................................... 8 Differentiation Rules ................................................................................................................................................................................. 8 Arc length ...................................................................................................................................................................................................... 8 Tangents ......................................................................................................................................................................................................... 9 Unit Tangent Vector .................................................................................................................................................................................. 9 Curvature 1 .................................................................................................................................................................................................... 9 Curvature 2 (vector function) ................................................................................................................................................................ 9 Curvature 3 (single variable) ............................................................................................................................................................... 9 Curvature 4 (parametric) ........................................................................................................................................................................ 9 Normal Vector .............................................................................................................................................................................................. 9 Binormal Vector .......................................................................................................................................................................................... 9 Tangential and Normal Components (acceleration) ............................................................................................................... 10 Physics Notations .................................................................................................................................................................................... 10 Position ......................................................................................................................................................................................................... 10 Velocity ......................................................................................................................................................................................................... 10 Speed .............................................................................................................................................................................................................. 10 Acceleration ................................................................................................................................................................................................ 10 Curvature ..................................................................................................................................................................................................... 10 Tangential Component (acceleration) ........................................................................................................................................... 10 Normal Component (acceleration) .................................................................................................................................................. 10 Acceleration ................................................................................................................................................................................................ 10 Note: .............................................................................................................................................................................................................. 10 Dot Product of Velocity and Acceleration ..................................................................................................................................... 10 Tangential Acceleration ........................................................................................................................................................................ 10 Normal Acceleration ............................................................................................................................................................................... 10 Frenet-Serret Formulas ......................................................................................................................................................................... 11 Partial Derivatives ............................................................................................................................ 11 Mixed Partial ............................................................................................................................................................................................. 11
Equation of a Plane ................................................................................................................................................................................. 11 Normal Vector ........................................................................................................................................................................................... 11 Distance/Vector Between Points ..................................................................................................................................................... 11 Vector from two points .......................................................................................................................................................................... 11 Tangent Plane ........................................................................................................................................................................................... 11 Equation of a sphere .............................................................................................................................................................................. 12 Chain Rule .................................................................................................................................................................................................. 12 Gradient โf ................................................................................................................................................................................................. 12 Directional Derivative ........................................................................................................................................................................... 12 Differentials ............................................................................................................................................................................................... 12 Implicit Differentiation ......................................................................................................................................................................... 12
Extrema ........................................................................................................................................... 13 Lagrange Multipliers .............................................................................................................................................................................. 13 Two Constraints ........................................................................................................................................................................................ 14 Multiple Integrals ............................................................................................................................. 14 Double .......................................................................................................................................................................................................... 14 Average Value ........................................................................................................................................................................................... 14 Type I ............................................................................................................................................................................................................ 14 Type II .......................................................................................................................................................................................................... 14 Polar .............................................................................................................................................................................................................. 15 Type III ......................................................................................................................................................................................................... 15 Moments & Center of Mass ................................................................................................................................................................. 15 Moments ....................................................................................................................................................................................................... 15 Center of mass ........................................................................................................................................................................................... 15 Moment of Inertia .................................................................................................................................................................................... 15 Surface Area .............................................................................................................................................................................................. 16 Triple Integrals ......................................................................................................................................................................................... 16 Moments & Center of Mass ................................................................................................................................................................. 16 Moments ....................................................................................................................................................................................................... 16 Center of Mass ........................................................................................................................................................................................... 17 Moments of Inertia .................................................................................................................................................................................. 17 Cylindrical Coordinates ........................................................................................................................................................................ 17 Spherical Coordinates ........................................................................................................................................................................... 17 Change of Variables ................................................................................................................................................................................ 17 2D Jacobian ................................................................................................................................................................................................. 17 3D Jacobian ................................................................................................................................................................................................. 18 Line Integrals .................................................................................................................................... 18 General ......................................................................................................................................................................................................... 18 Smooth .......................................................................................................................................................................................................... 18 Not Smooth ................................................................................................................................................................................................. 18 x, y Derivatives ......................................................................................................................................................................................... 18 Vector form ................................................................................................................................................................................................ 19 Respect to z ................................................................................................................................................................................................ 19 Multiple Functions P, Q, R .................................................................................................................................................................... 19 Work ............................................................................................................................................................................................................. 19 Gradient Line Integral ........................................................................................................................................................................... 20 Conservative Vector Field ................................................................................................................................................................... 20 Greenโs Theorem ..................................................................................................................................................................................... 20 Curl โ ............................................................................................................................................................................................................ 20 Divergence ................................................................................................................................................................................................. 20 Stokes Theorem ....................................................................................................................................................................................... 20
Divergence Theorem ............................................................................................................................................................................. 21
PreCalculus Review .......................................................................................................................... 21 Arithmetic ................................................................................................................................................................................................... 21 Exponential ................................................................................................................................................................................................ 21 Radicals ....................................................................................................................................................................................................... 21 Fractions ..................................................................................................................................................................................................... 21 Logarithmic ................................................................................................................................................................................................ 22 Other Formulas/Equations ................................................................................................................................................................. 22 Areas ............................................................................................................................................................................................................. 24 Surface Areas ............................................................................................................................................................................................ 24 Volumes ....................................................................................................................................................................................................... 24 Domain Restrictions .............................................................................................................................................................................. 24 Right Triangle ........................................................................................................................................................................................... 25 Reciprocal Identities ............................................................................................................................................................................... 25 Double Angle Formulas ........................................................................................................................................................................ 26 Half Angle Formulas ............................................................................................................................................................................... 26 Sum and Difference Formulas ............................................................................................................................................................ 26 Product to Sum Formulas ..................................................................................................................................................................... 26 Sum to Product Formulas ..................................................................................................................................................................... 26 Unit Circle ........................................................................................................................................ 27 Pre-CALC III Reference ...................................................................................................................... 28 Derivative Rules (prime notations) ................................................................................................................................................ 28 Derivative of a Constant ........................................................................................................................................................................ 28 Power Rule .................................................................................................................................................................................................. 28 Constant Multiple Rule .......................................................................................................................................................................... 28 Product Rule ............................................................................................................................................................................................... 28 Quotient Rule ............................................................................................................................................................................................. 28 Chain Rule ................................................................................................................................................................................................... 28 Exponential and Logarithmic ............................................................................................................................................................. 28 exp{u} ............................................................................................................................................................................................................ 28 Natural Log ................................................................................................................................................................................................. 28 Base Log ....................................................................................................................................................................................................... 28 Exponential ................................................................................................................................................................................................. 28 Inverse Function Derivative ............................................................................................................................................................... 28 Trig Derivatives ....................................................................................................................................................................................... 29 Standard ...................................................................................................................................................................................................... 29 Inverse ........................................................................................................................................................................................................... 29 Common Derivatives ............................................................................................................................................................................. 29 Operator ....................................................................................................................................................................................................... 29 Prime ............................................................................................................................................................................................................. 30 Implicit Differentiation ..................................................................................................................... 30 Tangent Line .............................................................................................................................................................................................. 30 Related Rates ............................................................................................................................................................................................ 31 Hyperbolic Functions ........................................................................................................................ 31 Notation ....................................................................................................................................................................................................... 31 Identities ..................................................................................................................................................................................................... 31 Derivatives ................................................................................................................................................................................................. 32 Standard ...................................................................................................................................................................................................... 32 Inverse ........................................................................................................................................................................................................... 32
Antiderivatives & Integration ........................................................................................................... 32 Basic Rules ................................................................................................................................................................................................. 32 Riemann Sum for Area Approximation ......................................................................................................................................... 33 Area Approximation Rules .................................................................................................................................................................. 33 Midpoint Rule ............................................................................................................................................................................................. 33 Trapezoid Rule .......................................................................................................................................................................................... 33 The Integral Notation โซ ................................................................................................................... 34 Definite Integral Properties ................................................................................................................................................................ 34 Fundamental Theorems ....................................................................................................................................................................... 34 Limit Definition of a Definite Integral ............................................................................................................................................ 35 Differential Equation (1st order) ....................................................................................................................................................... 35 Common Integrals ................................................................................................................................................................................... 35 Definite Integral Rules .......................................................................................................................................................................... 36 Substitution ................................................................................................................................................................................................ 36 Integration by Parts ................................................................................................................................................................................ 36 Trig Substitution ...................................................................................................................................................................................... 36 Trig Identity ............................................................................................................................................................................................... 36 Partial Fractions ...................................................................................................................................................................................... 36
3D Calculus Magnitude ๐ฃ = ๐ฏ = ๐ฃ! , ๐ฃ! , ๐ฃ! Unit Vectors ๐ฃ=
๐ฃ ๐ฃ
โ
๐ฃ = ๐ฏ =
โก ๐ฏโก๐ฎ=
๐ฃ!! + ๐ฃ!! + ๐ฃ!!
๐ฏ ๐ฏ
๐ค โก ๐ข ๐ฅ โก ๐ฃ ๐ โก ๐ค ๐ค = 1, 0, 0 ๐ฅ = 0, 1, 0 ๐ = 1, 0, 0 Note: ๐ฃ = ๐ฃ! , ๐ฃ! , ๐ฃ! = ๐ฃ! 1, 0, 0 + ๐ฃ! 0, 1, 0 + ๐ฃ! 0, 0, 1 = ๐ฃ! ๐ค + ๐ฃ! ๐ฅ + ๐ฃ! ๐ = ๐ฃ! ๐ข + ๐ฃ! ๐ฃ + ๐ฃ! ๐ค Dot/Cross Product Dot ๐ โ
๐ = ๐ โ
๐ = ๐! , ๐! , ๐! โ
๐! , ๐! , ๐! = ๐! ๐! + ๐! ๐! + ๐! ๐! Properties ๐ โ
๐ = ๐ ! ๐ โ
๐ + ๐ = ๐ โ
๐ + ๐ โ
๐
๐ โ
๐ = ๐ โ
๐ k๐ โ
๐ = k ๐ โ
๐ = ๐ โ
k๐
Cross ๐ร๐ = ๐ร๐ = ๐! , ๐! , ๐! ร ๐! , ๐! , ๐! ๐ค ๐ฅ ๐ = ๐! ๐! ๐! ๐! ๐! ๐! ๐! ๐! ๐! ๐! ๐! ๐! = ๐ ๐ ๐ค โ ๐ ๐ ๐ฅ + ๐ ๐ ๐ ! ! ! ! ! ! = ๐! ๐! โ ๐! ๐! ๐ค โ ๐! ๐! โ ๐! ๐! ๐ฅ + ๐! ๐! โ ๐! ๐! ๐
Properties ๐ร๐ = โ๐ร๐ k๐ ร๐ = k ๐ร๐ = ๐ร k๐ ๐ โ
๐ร๐ = ๐ร๐ โ
๐ ๐ + ๐ ร๐ = ๐ร๐ + ๐ร๐ ๐ร ๐ + ๐ = ๐ร๐ + ๐ร๐ ๐ร ๐ร๐ = ๐ โ
๐ ๐ โ ๐ โ
๐ ๐ Angles Between Vectors ๐ โ
๐ = ๐ ๐ cos ๐ ๐ร๐ = ๐ ๐ sin ๐ ๐โ
๐ ๐ร๐ โ ๐ = arccos โ ๐ = arcsin ๐ ๐ ๐ ๐ Projections Scalar Vector ๐โ
๐ ๐โ
๐ comp! ๐ = proj๐ ๐ = ๐ ๐ ๐! Areas/Volume Triangle Parallelogram Parallelepiped 1 ๐ด = ๐ร๐ ๐ = ๐ โ
๐ร๐ ๐ด = ๐ร๐ 2 Line โ ๐ก = ๐! + ๐ก๐ฃ ๐ฃ = ๐! ๐! = ๐! โ ๐! = ๐ฅ! , ๐ฆ! , ๐ง! + ๐ก ๐, ๐, ๐ = ๐ฅ, ๐ฆ, ๐ง โ ๐ฅ! , ๐ฆ! , ๐ง! = ๐ฅ! + ๐๐ก, ๐ฆ! + ๐๐ก, ๐ง! + ๐๐ก = ๐ฅ โ ๐ฅ! , ๐ฆ โ ๐ฆ! , ๐ง โ ๐ง! = ๐ฅ! , ๐ฆ! , ๐ง! + ๐ก ๐ฅ โ ๐ฅ! , ๐ฆ โ ๐ฆ! , ๐ง โ ๐ง! = ๐, ๐, ๐ Line from tip to tip A line segment from the tips two vectors beginning from the origin to ๐ฃ! โ ๐ฃ! is โ ๐ก = 1 โ ๐ก ๐ฃ! + ๐ก๐ฃ! , ๐ก โ 0, 1
Equation of a Plane ๐๐ฅ + ๐๐ฆ + ๐๐ง = ๐ โ ๐ = ๐, ๐, ๐ โฅ surface ๐ is perpendicular to the surface ๐ฃ is in the plane, ๐! = ๐ฅ! , ๐ฆ! , ๐ง! (point in plane) ๐ โฅ ๐ฃ โ ๐ โ
๐ฃ = ๐, ๐, ๐ โ
๐ฅ โ ๐ฅ! , ๐ฆ โ ๐ฆ! , ๐ง โ ๐ง! = ๐ ๐ฅ โ ๐ฅ! + ๐ ๐ฆ โ ๐ฆ! + ๐ ๐ง โ ๐ง! = 0 Vector Functions ๐ ๐ก = ๐! ๐ก , ๐! ๐ก , ๐! ๐ก = ๐ ๐ก , ๐ ๐ก , โ ๐ก Limit
lim ๐ ๐ก = lim ๐ ๐ก , lim ๐ ๐ก , lim โ ๐ก
!โ!
!โ!
!โ!
!โ!
๐๐ = ๐ ! ๐ก , ๐! ๐ก , โ! ๐ก ๐๐ก
Derivative
!!
Definite Integral
๐ ๐ก ๐๐ก =
!!
Indefinite Integral
!! !!
๐ ๐ก ๐๐ก =
!!
๐! ๐ก ๐๐ก ๐ค +
๐! ๐ก ๐๐ก ๐ค +
!!
๐! ๐ก ๐๐ก ๐ฅ +
๐! ๐ก ๐๐ก ๐ฅ +
Differentiation Rules Note: ๐ฃ ๐ก , ๐ข ๐ก , ๐ ๐ก Function dot Vector
Vector cross Vector
๐ ๐ ๐ก โ
๐ข ๐ก ๐๐ก
๐ ๐ข ๐ก ร๐ฃ ๐ก ๐๐ก
=๐ข ๐ก
๐๐ ๐๐ข +๐ ๐ก ๐๐ก ๐๐ก
Vector dot Vector ๐ ๐ข ๐ก โ
๐ฃ ๐ก ๐๐ก
=
!! !!
๐! ๐ก ๐๐ก ๐
๐! ๐ก ๐๐ก ๐ + ๐ถ
๐๐ข ๐๐ฃ ร๐ฃ ๐ก + ๐ข ๐ก ร ๐๐ก ๐๐ก
Chain Rule
=๐ฃ ๐ก โ
๐๐ข ๐๐ฃ +๐ข ๐ก โ
๐๐ก ๐๐ก
!
!
๐ ๐ข ๐ ๐ก ๐๐ก
= ๐ข! ๐ ๐ก ๐ ! ๐ก
Arc length ๐ฟ=
!! !!
๐๐! ๐๐ก
+
๐๐! ๐๐ก
+
๐๐! ๐๐ก
!
๐๐ก =
!! !!
๐! ๐ก
!
+ ๐! ๐ก
!
+ โ! ๐ก
!
๐๐ก =
!! !!
๐๐ ๐๐ก ๐๐ก
Tangents Unit Tangent Vector
๐ ๐ก =
๐ซ! ๐ก , ๐ซ! ๐ก
๐ซ! ๐ก
=
๐๐ ๐๐ก
Curvature 1
๐๐ ๐๐ ๐๐ ๐๐ก ๐! ๐ก ๐๐ก ๐
(๐ก) = = = = ! ๐๐ ๐๐ ๐๐ก ๐๐ ๐ซ ๐ก ๐๐ก
Curvature 2 (vector function)
๐ซ ! ๐ก ร๐ซ !! ๐ก ๐
(๐ก) = ๐ซ! ๐ก !
Curvature 3 (single variable)
๐
(๐ฅ) =
๐ !! ๐ฅ
! ! !
1 + ๐! ๐ฅ Curvature 4 (parametric)
๐
๐ก =
๐ฅ ! ๐ก ๐ฆ !! ๐ก โ ๐ฆ ! ๐ก ๐ฅ !! ๐ก ๐ฅ! ๐ก
Normal Vector Binormal Vector
๐ ๐ก =
!
+ ๐ฆ! ๐ก
๐! ๐ก ๐! ๐ก
๐ ๐ก = ๐ ๐ก ร๐ ๐ก
! ! !
Tangential and Normal Components (acceleration) Physics Notations Position ๐ ๐ก โก๐ซ ๐ก Velocity
๐ฃ ๐ก = ๐! ๐ก =
๐๐ ๐๐ซ = = ๐ซ! ๐ก ๐๐ก ๐๐ก
= ๐! ๐ก
Speed
๐ฃ= ๐ฃ ๐ก
Acceleration
๐ ๐ก = ๐ฃ ! ๐ก = ๐ !! ๐ก
๐ ๐ก =
๐ซ! ๐ก ๐ซ! ๐ก
=
๐ฃ ๐ก ๐ฃ ๐ก
๐ฃ = ๐ฃ
๐ฃ = ๐ฃ๐ โ
๐๐ฃ = ๐ = ๐ฃ ! ๐ + ๐ฃ๐โฒ ๐๐ก
Curvature
๐
=
๐! ๐! = โ ๐
๐ฃ = ๐โฒ ๐ซ! ๐ฃ
Tangential Component (acceleration)
๐! =
๐ ! ๐๐ฃ ๐ = = ๐ฃ !, ๐๐ก ๐๐ก
๐ฃ = ๐ฃ = ๐โฒ โก ๐ซโฒ
Normal Component (acceleration)
๐! = ๐
๐ฃ !
Acceleration
๐ = ๐ฃ ! ๐ + ๐
๐ฃ ! ๐ = ๐! ๐ + ๐! ๐
Note:
๐ โ
๐ = 1 โง ๐ โ
๐ = 0
Dot Product of Velocity and Acceleration ๐ฃ โ
๐ = ๐ฃ๐ โ
๐ฃ ! ๐ + ๐
๐ฃ ! ๐ = ๐ฃ๐ฃ ! ๐ โ
๐ + ๐
๐ฃ ! ๐ โ
๐ = ๐ฃ๐ฃโฒ Tangential Acceleration Normal Acceleration
๐! = ๐ฃ ! =
๐ฃ โ
๐ ๐ซ ! ๐ก โ
๐ซ !! ๐ก = ๐ฃ ๐ซ! ๐ก
๐! = ๐
๐ฃ ! =
๐ซ ! ๐ก ร ๐ซ !! ๐ก ๐ซ! ๐ก
Frenet-Serret Formulas ๐๐ = ๐
๐ ๐๐
๐๐ = โ๐
๐ + ๐๐ ๐๐
๐๐ = โ๐๐ ๐๐ฅ
Partial Derivatives Given a multivariable function e.g. ๐ ๐ฅ, ๐ฆ, ๐ง , then a partial derivative is the derivative with respect to a variable where the other variables are treating as constants i.e. do not implicitly differentiate. ๐๐ ๐๐ ๐๐ = ๐! = ๐! ๐ฅ, ๐ฆ, ๐ง = ๐! = ๐! ๐ฅ, ๐ฆ, ๐ง = ๐! = ๐! ๐ฅ, ๐ฆ, ๐ง ๐๐ฅ ๐๐ฆ ๐๐ง ๐!๐ ๐!๐ ๐!๐ = ๐ = ๐ = ๐!! !! !! ๐๐ฅ ! ๐๐ฆ ! ๐๐ง ! Mixed Partial ๐!๐ ๐!๐ = ๐!" , = ๐!" ๐๐ฅ๐๐ฆ ๐๐ฆ๐๐ฅ Equation of a Plane ๐๐ฅ + ๐๐ฆ + ๐๐ง = ๐ Normal Vector The normal vector ๐ = ๐, ๐, ๐ , is extracted from the equation of a plane, and the normal vector is perpendicular to the surface. Distance/Vector Between Points Vector from two points ๐! ๐, ๐, ๐ โง ๐! ๐, ๐, ๐ โ ๐! ๐! = ๐! โ ๐! = ๐ โ ๐, ๐ โ ๐, ๐ โ ๐ ๐! ๐! = ๐ โ ๐ ! + ๐ โ ๐ ! + ๐ โ ๐ ! Tangent Plane ๐ง โ ๐ง! = ๐! ๐ฅ! , ๐ฆ! ๐ฅ โ ๐ฅ! + ๐! ๐ฅ! , ๐ฆ! ๐ฆ โ ๐ฆ!
Equation of a sphere ๐ฅ โ โ ! + ๐ฆ โ ๐ ! + ๐ง โ ๐ ! = ๐ ! , center: โ, ๐, ๐ radius: ๐ Chain Rule ๐๐ง ๐๐ง ๐๐ฅ ๐๐ง ๐๐ฆ = + , ๐ฅ =๐ฅ ๐ก โง๐ฆ =๐ฆ ๐ก ๐๐ก ๐๐ฅ ๐๐ก ๐๐ฆ ๐๐ก ๐๐ง ๐๐ง ๐๐ฅ ๐๐ง ๐๐ฆ ๐๐ง ๐๐ง ๐๐ฅ ๐๐ง ๐๐ฆ = + , = + , ๐ฅ = ๐ฅ ๐ , ๐ก โง ๐ฆ = ๐ฆ ๐ , ๐ก ๐๐ ๐๐ฅ ๐๐ ๐๐ฆ ๐๐ ๐๐ก ๐๐ฅ ๐๐ก ๐๐ฆ ๐๐ก Gradient ๐ต๐ The symbol ๐ป is called nabla or del; ๐ is called partial or del. It would be appropriate to use โdelโ as del is for partial derivatives just as nabla is. The gradient of ๐ is noted as ๐ป๐, and is equal the vector function of partials i.e. ๐๐ ๐๐ ๐๐ ๐ป๐ = ๐ข+ ๐ฃ+ ๐ค ๐๐ฅ ๐๐ฆ ๐๐ง Directional Derivative Given ๐ ๐ฅ, ๐ฆ, ๐ง , ๐ฃ = ๐ฃ! , ๐ฃ! , ๐ฃ! , and ๐ ๐ฅ! , ๐ฆ! , ๐ง! ๐ฃ ๐ท๐ฎ ๐ โก ๐ป๐ ๐ฅ! , ๐ฆ! , ๐ง! โ
๐ฎ โก ๐ป๐ ๐ฅ! , ๐ฆ! , ๐ง! โ
๐ฃ 1 ๐ท๐ฎ ๐ = ๐ ๐ฅ , ๐ฆ , ๐ง , ๐ ๐ฅ , ๐ฆ , ๐ง , ๐ ๐ฅ , ๐ฆ , ๐ง โ
๐ฃ! , ๐ฃ! , ๐ฃ! ๐ฃ ! ! ! ! ! ! ! ! ! ! ! ! Differentials ๐๐ = ๐! ๐ฅ, ๐ฆ ๐ฅ๐ฅ + ๐! ๐ฅ, ๐ฆ ๐ฅ๐ฆ + ๐! ๐ฅ, ๐ฆ ๐ฅ๐ง Implicit Differentiation ๐๐น ๐๐น ๐๐ง ๐๐ง ๐๐ฆ = โ ๐๐ฅ โง =โ ๐๐น ๐๐น ๐๐ฅ ๐๐ฆ ๐๐ง ๐๐ง
Extrema Given a three-dimensional function ๐, we can find the extrema by using partial derivatives, and derivative tests. Process: Set ๐! = 0 Set ๐! = 0 Solve for ๐ฅ, ๐ฆ = ๐! , ๐! (critical point) Evaluate ๐!! ๐! , ๐! ๐!! ๐!" ๐!" True: ๐!" = ๐!! ๐!! ๐!" ! ๐ท= = ๐!! ๐!! โ ๐!" ๐!" ๐!! Local Min: ๐ท > 0 and ๐!! ๐! , ๐! > 0 Local Max: ๐ท > 0 and ๐!! ๐! , ๐! < 0 Saddle: ๐ท < 0 Lagrange Multipliers These are like puzzles i.e. the set up is pretty straight forward, but you may need to make multiple attempts to find the right pattern. 2D Given ๐ ๐ฅ, ๐ฆ (function) and ๐ ๐ฅ, ๐ฆ = ๐ (constraint) then ๐ป๐ ๐ฅ, ๐ฆ = ๐๐ป๐ ๐ฅ, ๐ฆ Solve the following system: ๐! = ๐๐! ๐! = ๐๐! ๐ ๐ฅ, ๐ฆ = ๐ 3D Given ๐ ๐ฅ, ๐ฆ, ๐ง (function) and ๐ ๐ฅ, ๐ฆ, ๐ง = ๐ (constraint) then ๐ป๐ ๐ฅ, ๐ฆ, ๐ง = ๐๐ป๐ ๐ฅ, ๐ฆ, ๐ง Solve the following system: ๐! = ๐๐! ๐! = ๐๐! ๐! = ๐๐! ๐ ๐ฅ, ๐ฆ, ๐ง = ๐ Once you find all possible values, then you simply plug them into ๐, and see which is largest/smallest. These are then your max/min.
Two Constraints
๐ป๐ ๐ฅ, ๐ฆ, ๐ง = ๐๐ป๐ ๐ฅ, ๐ฆ, ๐ง + ๐๐ปโ ๐ฅ, ๐ฆ, ๐ง
๐! = ๐๐! + ๐โ!
๐! = ๐๐! + ๐โ!
๐! = ๐๐! + ๐โ!
๐ ๐ฅ, ๐ฆ, ๐ง = ๐!
โ ๐ฅ, ๐ฆ, ๐ง = ๐!
Multiple Integrals Double !
!
๐ ๐ฅ, ๐ฆ ๐๐ฆ๐๐ฅ โก !
๐ ๐ฅ, ๐ฆ ๐๐ด,
!
๐
=
Note 1:
!
!
!
!
!
!
!
Note 2: ๐ ๐ฅ, ๐ฆ = ๐ ๐ฅ ๐ ๐ฆ
๐ ๐ฅ, ๐ฆ ๐๐ฅ๐๐ฆ โ ๐ โค ๐ฅ โค ๐ โง ๐ โค ๐ฆ โค ๐ !
!
!
!
๐ ๐ฅ, ๐ฆ ๐๐ฆ๐๐ฅ = Average Value
!
!
!
๐ ๐ฅ ๐ ๐ฆ ๐๐ฆ๐๐ฅ = !
!
1 1 ๐โ๐ ๐โ๐ Type I
!
๐ ๐ฅ, ๐ฆ ๐๐ด = !
!
!
๐ ๐ฅ, ๐ฆ ๐๐ด = !
โก ๐
= ๐ , ๐ ร ๐, ๐
!
๐ ๐ฅ, ๐ฆ ๐๐ฆ๐๐ฅ =
Type II
๐ฅ, ๐ฆ ๐ฅ โ ๐ , ๐ , ๐ฆ โ ๐, ๐
!
!
!! !
!
!
!! !
๐ ๐ฅ ๐๐ฅ !
!
๐ ๐ฅ, ๐ฆ ๐๐ฆ๐๐ฅ !
!
๐ ๐ฅ, ๐ฆ ๐๐ฆ๐๐ฅ,
๐ท=
๐ฅ, ๐ฆ ๐ฅ โ ๐ , ๐ , ๐ฆ โ ๐! ๐ฅ , ๐! ๐ฅ
๐ ๐ฅ, ๐ฆ ๐๐ฅ๐๐ฆ,
๐ท=
๐ฅ, ๐ฆ ๐ฅ โ โ! ๐ฆ , โ! ๐ฆ , ๐ฆ โ ๐, ๐
!! !
!! !
!
๐ ๐ฆ ๐๐ฆ
Polar ๐! = ๐ฅ! + ๐ฆ! ๐ ๐ฅ, ๐ฆ ๐๐ด = !
๐ฅ = ๐ cos ๐ !!
!!
!!
๐ฆ = ๐ sin ๐
๐๐ ๐ cos ๐ , ๐ sin ๐ ๐๐๐๐,
๐
=
!!
๐, ๐ ๐ โ ๐! , ๐! , ๐ โ ๐! , ๐!
Note: Do not forget the extra ๐ multiplied by ๐
Type III ๐ is continuous on a polar region !!
๐ ๐ฅ, ๐ฆ ๐๐ด = !
!!
๐
=
!! !
๐ ๐ cos ๐ , ๐ sin ๐ ๐ ๐๐๐๐,
!! !
๐, ๐ ๐ โ ๐! ๐ , ๐! ๐ , ๐ โ ๐! , ๐!
Moments & Center of Mass Moments ๐! ๐ฆ๐ ๐ฅ, ๐ฆ ๐๐ด !
๐!
๐ฅ๐ ๐ฅ, ๐ฆ ๐๐ด !
Center of mass ๐! ๐ฅ= ๐ ๐ฆ=
๐! ๐
1 ๐
!
1 ๐
!
Moment of Inertia ๐ผ!
๐ฆ๐ ๐ฅ, ๐ฆ ๐๐ด,
๐=
๐ฅ๐ ๐ฅ, ๐ฆ ๐๐ด,
๐=
๐ฆ ! ๐ ๐ฅ, ๐ฆ ๐๐ด !
๐ผ!
๐ฅ ! ๐ ๐ฅ, ๐ฆ ๐๐ด !
๐ผ! (about origin)
๐ฅ ! + ๐ฆ ! ๐ ๐ฅ, ๐ฆ ๐๐ด !
๐ ๐ฅ, ๐ฆ ๐๐ด !
๐ ๐ฅ, ๐ฆ ๐๐ด !
Surface Area ๐ง = ๐ ๐ฅ, ๐ฆ , ๐ฅ, ๐ฆ โ ๐ท, and ๐! , ๐! are continuous ๐ด! =
๐๐ง ๐๐ฅ
1+ !
!
+
๐๐ง ๐๐ฆ
!
๐๐ด = !
1 + ๐! ๐ฅ, ๐ฆ
Triple Integrals ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐,
๐
=
๐ฅ, ๐ฆ, ๐ง
!
๐ฅ! , ๐ฅ! ร ๐ฆ! , ๐ฆ! ร ๐ง! , ๐ง!
Type IV: !! !,!
๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ = !
Type V:
!
!!
๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ = Type VI:
!
!!
!!
๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ = !
Moments & Center of Mass Moments ๐!" ๐ง๐ ๐ฅ, ๐ฆ, ๐ง ๐๐
!!
!
๐!"
๐ฅ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ !
๐!"
๐ฆ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ !
+ ๐! ๐ฅ, ๐ฆ
!! !!
!! !!
!! !!
๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ง ๐๐ด
!! !,!
!! ! !! !
!! ! !! !
โก
!
!! !,!
๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ง ๐๐ฆ ๐๐ฅ
!! !,!
!! !,! !! !,!
๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ง ๐๐ฅ ๐๐ฆ
!
๐๐ด
๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ฅ๐๐ฆ๐๐ง
Center of Mass The centroid of ๐ธ is the center of mass (๐ฅ, ๐ฆ, ๐ง) for constant density. ๐= ๐ฅ=
๐!" ๐
๐ฆ=
Moments of Inertia ๐ผ! =
๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ !
๐ฆ ! + ๐ง ! ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐
๐ผ! =
!
Cylindrical Coordinates ๐ฆ ๐! = ๐ฅ! + ๐ฆ! tan ๐ = ๐ฅ ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ = !
!
๐ง=
๐ฅ ! + ๐ง ! ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ ๐ผ! =
๐ฅ = ๐ cos ๐ !! !!
Note: Do not forget the extra ๐
๐!" ๐
!! ! !! !
!! ! !"# !,! !"# !
๐!" ๐
๐ฅ ! + ๐ฆ ! ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ !
๐ฆ = ๐ sin ๐
๐๐ ๐ cos ๐ , ๐ sin ๐ , ๐ง ๐๐ง๐๐๐๐
!! ! !"# !,! !"# !
Spherical Coordinates ๐ฅ = ๐ sin ๐ cos ๐ ๐ฆ = ๐ sin ๐ sin ๐ ๐ง = ๐ cos ๐ ๐ธ = ๐, ๐, ๐ ๐ โ ๐! , ๐! , ๐ โ ๐! , ๐! , ๐ โ ๐! , ๐! ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ = !
!!
Change of Variables 2D Jacobian
!!
๐๐ฅ ๐ ๐ฅ, ๐ฆ = ๐๐ข ๐๐ฆ ๐ ๐ข, ๐ฃ ๐๐ข
!!
!!
!!
๐! = ๐ฅ ! + ๐ฆ ! + ๐ง !
๐ ๐ sin ๐ cos ๐ , ๐ sin ๐ sin ๐ , ๐ cos ๐ ๐! sin ๐ ๐๐๐๐๐๐
!!
๐๐ฅ ๐๐ฃ = ๐๐ฅ ๐๐ฆ โ ๐๐ฅ ๐๐ฆ , ๐๐ฆ ๐๐ข ๐๐ฃ ๐๐ฃ ๐๐ข ๐๐ฃ
๐ ๐ฅ, ๐ฆ ๐๐ด = !
๐ง = ๐ง
๐ ๐ฅ ๐ข, ๐ฃ , ๐ฆ ๐ข, ๐ฃ !
๐ฅ = ๐ฅ ๐ข, ๐ฃ โง ๐ฆ = ๐ฆ ๐ข, ๐ฃ
abs
๐ ๐ฅ, ๐ฆ ๐ ๐ข, ๐ฃ
๐๐ข ๐๐ฃ
Note: Do not confuse the determinant with the absolute value i.e. ๐๐ฅ ๐๐ฅ ๐๐ฅ ๐๐ฅ ๐ ๐ฅ, ๐ฆ ๐๐ข ๐๐ฃ โ = abs ๐๐ข ๐๐ฃ ๐๐ฆ ๐๐ฆ ๐๐ฆ ๐๐ฆ ๐ ๐ข, ๐ฃ ๐๐ข ๐๐ฃ ๐๐ข ๐๐ฃ 3D Jacobian ๐๐ฅ ๐๐ฅ ๐๐ฅ ๐๐ข ๐๐ฃ ๐๐ค ๐๐ฆ ๐๐ฆ ๐๐ฆ ๐ฝ= , ๐ฅ = ๐ฅ ๐ข, ๐ฃ, ๐ค โง ๐ฆ = ๐ฆ ๐ข, ๐ฃ, ๐ค โง ๐ง = ๐ง ๐ข, ๐ฃ, ๐ค ๐๐ข ๐๐ฃ ๐๐ค ๐๐ง ๐๐ง ๐๐ง ๐๐ข ๐๐ฃ ๐๐ค ๐ ๐ฅ, ๐ฆ ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ โ ๐๐ = ๐ฝ ๐๐ข ๐๐ฃ ๐๐ค, ๐ฝ= ๐ ๐ข, ๐ฃ !
Line Integrals General Smooth ๐ ๐ฅ, ๐ฆ ๐๐ = !
Not Smooth
!!
๐ ๐ฅ, ๐ฆ ๐๐ = !
๐ ๐ฅ, ๐ฆ ๐๐ + !!
๐, ๐ Derivatives Respect to ๐ฅ
!
+ ๐ฆ! ๐ก
๐ ๐ฅ, ๐ฆ ๐๐ + โฏ !!
!
๐๐ก
Respect to ๐ฆ
๐ ๐ฅ, ๐ฆ ๐๐ฆ !
๐ ๐ฅ, ๐ฆ ๐๐ !!
!!
๐ ๐ฅ, ๐ฆ ๐๐ฅ !
Note: Changing direction of ๐ฅ, ๐ฆ
๐ฅ! ๐ก
๐ ๐ฅ ๐ก ,๐ฆ ๐ก
!!
!! !!
๐ ๐ฅ ๐ก , ๐ฆ ๐ก ๐ฅ ! ๐ก ๐๐ก ๐ ๐ฅ ๐ก , ๐ฆ ๐ก ๐ฆ ! ๐ก ๐๐ก
!!
๐ ๐ฅ, ๐ฆ ๐๐ = โ !!
Arc length
๐ ๐ฅ, ๐ฆ ๐๐ = !!
๐ ๐ฅ, ๐ฆ ๐๐ !
๐ ๐ฅ, ๐ฆ ๐๐ !
Vector form ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ = !
!!
โต ๐ซ ๐ก = ๐ฅ ๐ก ,๐ฆ ๐ก ,๐ง ๐ก โด
!!
!
+ ๐ฆ! ๐ก
๐ ๐ฅ ๐ก ,๐ฆ ๐ก ,๐ง ๐ก
๐ฅ! ๐ก
โง ๐ซ ๐ก !
๐ฅ! ๐ก
=
+ ๐ฆ! ๐ก
!
!
+ ๐ง! ๐ก
+ ๐ฆ! ๐ก !
!!
Multiple Functions ๐ท, ๐ธ, ๐น
!! !!
๐=
๐= ๐=
Case VI
+ ๐ง! ๐ก ๐ ๐ซ ๐ก
!
๐ซ ๐ก
๐๐ก
๐
๐ฅ, ๐ฆ, ๐ง โ
๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ ๐
โ
๐ ๐๐ ! !!
๐
๐ซ ๐ก
โ
!! !!
๐
๐ซ ๐ก
๐ซ! ๐ก ๐ซ! ๐ก
๐ซ ! ๐ก ๐๐ก
โ
๐ซ ! ๐ก ๐๐ก
!!
๐=
๐! ๐ก + ๐! ๐ก + ๐! ! ๐๐ก
!
๐=
Case V
๐๐ก
!!
!
Case IV
!
๐ ๐ฅ ๐ก , ๐ฆ ๐ก , ๐ง ๐ก ๐ง ! ๐ก ๐๐ก
๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ฅ + ๐ ๐ฅ, ๐ฆ, ๐ง ๐๐ฆ + ๐
๐ฅ, ๐ฆ, ๐ง ๐๐ง =
Case III
+ ๐ง! ๐ก
!!
Respect to ๐
Case II
! !!
๐๐ก =
!!
Work Case I
!
!!
๐ฅ! ๐ก
๐ ๐ฅ ๐ก ,๐ฆ ๐ก ,๐ง ๐ก
๐
๐ซ ๐ก
โ
๐๐ซ
!
๐=
๐๐๐ฅ + ๐๐๐ฆ + ๐
๐๐ง , !
๐
= ๐, ๐, ๐
Gradient Line Integral Case I: Fundamental Theorem
!
Case II Case III Case IV
!
๐ป๐ โ
๐๐ซ = ๐ ๐ซ ๐ก!
๐ป๐ โ
๐๐ซ = ๐ x! , y! , ๐ง! โ ๐ x! , ๐ฆ! , ๐ง!
!!
๐ป๐ ๐ซ ๐ก
!!
!!
โ
๐ซ ! ๐ก ๐๐ก =
!!
!!
Conservative Vector Field
โ ๐ ๐ซ ๐ก!
!!
๐ ๐ ๐ซ ๐ก ๐๐ก = ๐ ๐ซ ๐ก! ๐๐ก
๐ป๐ = ๐
x, y = ๐ x, y , ๐ x, y Greenโs Theorem ๐๐๐ฅ + ๐๐๐ฆ = !
!
โง
๐๐ ๐๐ฅ ๐๐ ๐๐ฆ ๐๐ ๐๐ง + + ๐๐ก ๐๐ฅ ๐๐ก ๐๐ฆ ๐๐ก ๐๐ง ๐๐ก โ ๐ ๐ซ ๐ก!
๐๐ ๐๐ = ๐๐ฆ ๐๐ฅ
๐๐ ๐๐ โ ๐๐ด ๐๐ฅ ๐๐ฆ
Curl ๐ต Note: gradient of ๐ is ๐ป๐, and curl/divergence of ๐ is ๐ปร๐ป๐ and ๐ป โ
๐ป๐, where ๐ป (nabla) is referred to as del. ๐ ๐ ๐ ๐ป= ๐ข+ ๐ฃ + ๐ค โก ๐! , ๐! , ๐! ๐๐ฅ ๐๐ฆ ๐๐ง ๐ข ๐ฃ ๐ค ๐๐ ๐๐ ๐๐ ! ! ! ๐ปร๐ป๐ = ๐ปร๐
= ๐! ๐! ๐! , ๐! , ๐! , ๐! โก ๐ข+ ๐ฃ+ ๐ค ๐๐ฅ ๐๐ฆ ๐ ! ! ! ๐! ๐! ๐! Conservative if curl ๐
= 0 Divergence ! ! ! ๐ป โ
๐ป๐ = ๐ป โ
๐
= ๐! , ๐! , ๐! โ
๐! , ๐! , ๐! Stokes Theorem ๐ป๐ โ
๐๐ซ = !
๐
โ
๐๐ซ = !
โร๐
โ
๐๐ = !
curl ๐
โ
๐๐ !
Divergence Theorem ๐
โ
๐๐ = !
๐ป โ
๐ป๐ ๐
๐ฝ = !
๐ป โ
๐
๐๐ = !
div ๐
๐๐ !
PreCalculus Review Arithmetic
๐ ๐ = ๐ ๐ ๐๐
๐๐ ยฑ ๐๐ = ๐ ๐ ยฑ ๐ = ๐ ยฑ ๐ ๐ ๐โ๐ ๐โ๐ = ๐โ๐ ๐โ๐
๐๐ + ๐๐ = ๐ + ๐, ๐ โ 0 ๐
๐ ๐ ๐ ๐๐ = โ = ๐ 1 ๐ ๐ ๐ Exponential ๐! = ๐
๐=
๐=
!
!"
๐=
๐ ๐
!
=
๐!! = ๐! ๐!
!
๐ = ๐!"
!
๐!
=
! ๐!
Fractions ๐ ๐ ๐๐ ยฑ ๐๐ ยฑ = ๐ ๐ ๐๐
๐ ๐
!
!
!!
1 ๐! =
๐ ๐ = ๐ โ ๐ = ๐๐ ๐ ๐ ๐ ๐๐ ๐
1 = ๐! ๐!!
๐! ๐!
๐!
๐! = ๐, ๐ ๐๐ ๐๐๐
๐!
=
! ๐!
๐ ๐๐ = ๐ ๐
๐
๐ยฑ๐ ๐ ๐ = ยฑ ๐ ๐ ๐
๐! = 1
๐! = ๐!!! ๐! Radicals ! !
๐ ๐ ๐๐ ยฑ ๐๐ ยฑ = ๐ ๐ ๐๐
! !
๐! ๐! = ๐!!! ! !
๐!
= ๐!
!
!
!
= ๐! !
๐! = ๐ , ๐ ๐๐ ๐๐ฃ๐๐ ๐ = ๐
!
๐
!
๐
!
=
๐! ! ๐!
๐ = ๐
๐ ๐ฅ โ ๐ฅ ๐ ๐ฅ ๐ ๐ฅ ยฑ ๐ ๐ฅ โ ๐ฅ ยฑ = ๐ ๐ฅ ๐ ๐ฅ ๐ ๐ฅ ๐ ๐ฅ
! !
Logarithmic ln ๐ = log ! ๐ ln ๐ log ! 1 = 0
๐ฆ = log ! ๐ฅ โ ๐ฅ = ๐ !
๐ โ 2.72
log ! ๐ = 1
log ! ๐! = ๐ข
log ! ๐ข = ln ๐ข
log ! ๐ข! = ๐ log ! ๐ข
log ! ๐ข๐ฃ = log ! ๐ข + log ! ๐ฃ
log !
๐ข = log ! ๐ข โ log ! ๐ฃ ๐ฃ
log ! ๐ = !
๐ฃ = ln ๐ข โ ๐ข = ๐
!
๐ฃ=๐
โ ๐ข = ln ๐ฃ
ln ๐ข! = ๐ ln ๐ข
1 ๐!
ln ๐ ! = ๐ข โ ๐ !" ! = ๐ข
ln 1 = 0 ln ๐ข๐ฃ = ln ๐ข + ln ๐ฃ
Other Formulas/Equations Quadratic Formula
ln
๐ข = ln ๐ข โ ln ๐ฃ ๐ฃ
๐๐ฅ ! + ๐๐ฅ + ๐ = 0
โ
๐ฅ=
Discriminant
๐= !!!
ln ๐ = undefined, ๐ โค 0 ln ๐ ! = 1 โ ๐ !" ! = 1
!
ln ๐ ln ๐
โ๐ ยฑ ๐ ! โ 4๐๐ 2๐
Two Real Solutions ๐ ! โ 4๐๐ > 0 Repeated Solution ๐ ! โ 4๐๐ = 0 Complex Solution ๐ฅ = ๐ผ ยฑ ๐ฝ๐ if ๐ ! โ 4๐๐ < 0
Complete the Square
!
๐ฆ = ๐๐ฅ + ๐๐ฅ + ๐
โ
๐ ๐ฆ=๐ ๐ฅ+ 2๐
!
๐! +๐โ 4๐
Other Formulas Distance Formula ๐ท=
Midpoint Formula !
๐ฅ โ ๐ฅ!
+ ๐ฆ โ ๐ฆ! !
๐=
Equation of a Line ๐ ๐๐๐๐ = ๐ =
๐ฅ + ๐ฅ! ๐ฆ + ๐ฆ! , 2 2
๐ฆ = ๐๐ฅ + ๐ ๐ฆ! โ ๐ฆ! = ๐ ๐ฅ! โ ๐ฅ! ๐ด๐ฅ + ๐ต๐ฆ = ๐ถ ๐ฆ = ๐๐ฅ ! + ๐๐ฅ + ๐ ๐ฆ = ๐ ๐ฅ โ โ ! + ๐ ! ๐ฅ โ โ + ๐ฆ โ ๐ ! = ๐!
๐ฆ! โ ๐ฆ! ๐ฅ! โ ๐ฅ!
Equation of Parabola Vertex: โ, ๐ Equation of Circle Center: โ, ๐ Radius: ๐ Equation of Ellipse
๐ฅโโ ๐!
!
+
Right Point: โ + ๐, ๐
๐ฆโ๐ ๐!
!
= 1
Left Point: โ โ ๐, ๐ Top Point: โ, ๐ + ๐
Bottom Point: โ, ๐ โ ๐ Equation of Hyperbola Center: โ, ๐ ! Slope: ยฑ !
๐ฅโโ ๐!
!
๐ฆโ๐ โ ๐!
!
= 1
!
Asymptotes: ๐ฆ = ยฑ ! ๐ฅ โ โ + ๐ Vertices: โ + ๐, ๐ , โ โ ๐, ๐ ! ๐ฆโ๐ ๐ฅโโ โ ๐! ๐!
Equation of Hyperbola Center: โ, ๐ ! Slope: ยฑ !
!
= 1
!
Asymptotes: ๐ฆ = ยฑ ! ๐ฅ โ โ + ๐ Vertices: โ, ๐ + ๐ , โ, ๐ โ ๐
Areas Square: ๐ด = ๐ฟ! = ๐ ! Rectangle: ๐ด = ๐ฟ โ ๐ Circle: ๐ด = ๐ โ ๐ ! ! ! Ellipse: ๐ด = ๐ โ ๐๐ Triangle: ๐ด = ! ๐ โ โ Trapezoid: ๐ด = ! ๐ + ๐ โ โ !" Parallelogram: ๐ โ โ Rhombus: ๐ด = ! , ๐ and ๐ are the diagonals Surface Areas Cube: ๐ด! = 6๐ฟ! = 6๐ ! Box: ๐ด! = 2(๐ฟ๐ + ๐๐ป + ๐ป๐ฟ) Sphere: ๐ด! = 4๐๐ ! Cone: ๐ด! = ๐๐ ๐ + โ! + ๐ ! Cylinder: 2๐๐โ + 2๐๐ ! Volumes ! Cube: ๐ = ๐ฟ! = ๐ ! Box: ๐ = ๐ฟ โ ๐ โ ๐ป Sphere: ๐ = ! ๐ โ ๐ ! ! ! Cone: ๐ = ! ๐ โ ๐ ! โ Ellipsoid: ๐ = ! ๐ โ ๐๐๐, ๐, ๐, ๐ are the radii Domain Restrictions ๐ข ๐ฆ= , ๐ฃโ 0 ๐ฆ = ๐ข, ๐ขโฅ0 ๐ฆ = ln ๐ข , ๐ข > 0 ๐ฃ ! ๐ฆ = ๐! , none ๐ฆ = ๐ข none if ๐ is odd, ๐ข โฅ 0 if ๐ is even
Right Triangle
๐ฅ! + ๐ฆ! = ๐! โ cos ๐ผ = tan ๐ผ = sin ๐ผ =
๐=
๐ฅ! + ๐ฆ!
๐ฅ ๐
๐ฆ cos ๐ฝ = ๐
๐ฆ ๐ฅ
๐ฅ tan ๐ฝ = ๐ฆ
๐ฆ ๐
๐ฅ sin ๐ฝ = ๐
๐ฅ = ๐ cos ๐ผ ๐ฆ = ๐ sin ๐ผ ๐ฆ ๐ฆ ๐ผ = arctan = tan!! ๐ฅ ๐ฅ Reciprocal Identities 1 sin ๐ = csc ๐ 1 csc ๐ = sec ๐ sin ๐ tan ๐ = cos ๐
๐ฆ = ๐ cos ๐ฝ ๐ฅ = ๐ sin ๐ฝ ๐ฝ = arctan
๐ฅ ๐ฅ = tan!! ๐ฆ ๐ฆ
csc ๐ =
1 sin ๐
tan ๐ =
1 cot ๐
sec ๐ =
1 cos ๐
cot ๐ =
1 tan ๐
cot ๐ =
cos ๐ sin ๐
Double Angle Formulas sin 2๐ = 2 sin ๐ cos ๐ cos 2๐ = 1 โ 2 sin! ๐ cos 2๐ = cos ! ๐ โ sin! ๐ cos 2๐ = 2 cos ! ๐ โ 1 ! !"# ! cos 2๐ = 1 โ 2 sin! ๐ tan 2๐ = !!!"#! !Officia Half Angle Formulas 1 1 1 โ cos(2๐) sin! ๐ = 1 โ cos 2๐ cos ! ๐ = 1 + ๐๐๐ 2๐ tan! ๐ = 2 2 1 + cos(2๐) Sum and Difference Formulas sin ๐ผ ยฑ ๐ฝ = sin ๐ผ cos ๐ฝ ยฑ cos ๐ผ sin ๐ฝ cos(๐ผ ยฑ ๐ฝ) = cos ๐ผ cos ๐ฝ โ sin ๐ผ sin ๐ฝ tan ๐ผ ยฑ tan ๐ฝ tan ๐ผ ยฑ ๐ฝ = 1 โ tan ๐ผ ๐ก๐๐๐ฝ Product to Sum Formulas 1 1 sin ๐ผ sin ๐ฝ = [cos ๐ผ โ ๐ฝ โ cos(๐ผ + ๐ฝ)] cos ๐ผ cos ๐ฝ = [cos ๐ผ โ ๐ฝ + cos(๐ผ + ๐ฝ)] 2 2 1 1 sin ๐ผ cos ๐ฝ = [sin ๐ผ + ๐ฝ + sin ๐ผ โ ๐ฝ ] cos ๐ผ sin ๐ฝ = sin ๐ผ + ๐ฝ โ sin ๐ผ โ ๐ฝ 2 2 Sum to Product Formulas ๐ผ+๐ฝ ๐ผโ๐ฝ ๐ผ+๐ฝ ๐ผโ๐ฝ sin ๐ผ + sin ๐ฝ = 2 sin cos sin ๐ผ โ sin ๐ฝ = 2 cos sin 2 2 2 2 ๐ผ+๐ฝ ๐ผโ๐ฝ ๐ผ+๐ฝ ๐ผโ๐ฝ cos ๐ผ + cos ๐ฝ = 2 cos cos cos ๐ผ โ cos ๐ฝ = โ2 sin sin 2 2 2 2
Unit Circle
Pre-CALC III Reference Derivative Rules (prime notations) Derivative of a Constant ๐ ! = 0 Power Rule ๐ฅ ! โฒ = ๐๐ฅ !!! Constant Multiple Rule ๐๐ข ! = ๐๐ขโฒ Product Rule ๐ข๐ฃ ! = ๐ข๐ฃ ! + ๐ฃ๐ขโฒ ๐ข ! ๐ฃ๐ข! โ ๐ข๐ฃโฒ Quotient Rule = ๐ฃ ๐ฃ! Chain Rule
[๐ข ๐ฃ ]โฒ = ๐ข! ๐ฃ โ ๐ฃโฒ
Exponential and Logarithmic
๐ ! ๐ ๐๐ฅ
exp{u}
Note: log ! ๐ โก
!" ! !" !
Exponential
Inverse Function Derivative ๐ !! ๐ ๐ฅ ๐๐ฅ
!
= ๐!
!
โ ๐! ๐ฅ
๐ ๐! ๐ฅ ln ๐ ๐ฅ = ๐๐ฅ ๐ ๐ฅ ๐ 1 ๐! ๐ฅ log ! ๐ ๐ฅ = โ
๐๐ฅ ln ๐ ๐ ๐ฅ ๐ !! ๐ = ๐ ! ! ๐ ! ๐ฅ ln ๐ ๐๐ฅ
Natural Log
Base Log
Operator
!
=
1 ๐!
๐ !!
๐
๐!
!
ln ๐ข
Prime = ๐ ! โ
๐ขโฒ
!
๐ข! = ๐ข
log ! ๐ข ! = ๐!
!
= ๐! ๐ข! ln ๐
๐ !! ๐ = ๐ โ ๐ ๐ = ๐
,
1 ๐ข! โ
ln ๐ ๐ข
Trig Derivatives Standard sin ๐ข ! = cos ๐ข โ ๐ข! csc ๐ข
!
= โ csc ๐ข cot ๐ข โ ๐ข!
Inverse sin!! ๐ข csc !! ๐ข
!
!
๐ขโฒ
=
=โ
1 โ ๐ข!
!
cos ๐ข
๐ขโฒ
๐ข ๐ข! โ 1
Common Derivatives Operator ๐ ๐๐ฆ ๐ฆ= ๐๐ฅ ๐๐ฅ ๐ ! ๐ = ๐! ๐๐ฅ
sec ๐ข
!
= โ sin ๐ข โ ๐ข!
tan ๐ข
= sec ๐ข tan ๐ข โ ๐ข!
cos !! ๐ข
!
sec !! ๐ข
!
=โ =
๐ขโฒ 1 โ ๐ข!
๐ขโฒ
๐ข ๐ข! โ 1
cot ๐ข
!
!
= sec ! ๐ข โ ๐ข!
= โ csc ! ๐ข โ ๐ขโฒ
tan!! ๐ข cot !! ๐ข
!
!
=
๐ขโฒ 1 + ๐ข!
=โ
๐ขโฒ 1 + ๐ข!
๐ ๐! ๐ฅ ln ๐ ๐ฅ = ๐๐ฅ ๐ ๐ฅ
๐ ! ๐ฅ = ๐๐ฅ !!! ๐๐ฅ ๐ !! ๐ = ๐! ! ๐! ๐ฅ ๐๐ฅ ๐ ! ๐ = ๐ ! ln ๐ ๐๐ฅ
๐ ! ๐๐ฆ ๐ฆ = ๐๐ฆ !!! ๐๐ฅ ๐๐ฅ ๐ 1 ln ๐ฅ = ๐๐ฅ ๐ฅ ๐ !! ๐ = ๐ ! ! ๐ ! ๐ฅ ln ๐ ๐๐ฅ
๐ sin ๐ฅ = cos ๐ฅ ๐๐ฅ ๐ (sec ๐ฅ) = sec ๐ฅ tan ๐ฅ ๐๐ฅ ๐ 1 sin!! ๐ฅ = ๐๐ฅ 1 โ ๐ฅ!
๐ csc ๐ฅ = โcsc ๐ฅ cot ๐ฅ ๐๐ฅ ๐ tan ๐ฅ = sec ! ๐ฅ ๐๐ฅ ๐ โ1 csc !! ๐ฅ = ๐๐ฅ ๐ฅ ๐ฅ! โ 1
๐ cos ๐ฅ = โ sin ๐ฅ ๐๐ฅ ๐ cot ๐ฅ = โ csc ! ๐ฅ ๐๐ฅ ๐ โ1 cos !! ๐ฅ = ๐๐ฅ 1 โ ๐ฅ!
๐ sec !! ๐ฅ = ๐๐ฅ ๐ฅ
๐ 1 tan!! ๐ฅ = ๐๐ฅ 1 + ๐ฅ!
๐ โ1 cot !! ๐ฅ = ๐๐ฅ 1 + ๐ฅ!
๐ csch ๐ฅ = โ csch ๐ฅ coth ๐ฅ ๐๐ฅ ๐ tanh ๐ฅ = sech! ๐ฅ ๐๐ฅ
๐ cosh ๐ฅ = sinh ๐ฅ ๐๐ฅ ๐ coth ๐ฅ = โ csch! ๐ฅ ๐๐ฅ
1
๐ฅ! โ 1
๐ sinh ๐ฅ = cosh ๐ฅ ๐๐ฅ ๐ sech ๐ฅ = โ sech ๐ฅ tanh ๐ฅ ๐๐ฅ
Prime ๐ ! ! = ๐ข! ๐ !
ln ๐ข ! =
๐ข! ๐ข
๐! ! = ๐ข! ๐! ln ๐
sin ๐ข ! = ๐ข! cos ๐ข
cos ๐ข ! = โ๐ข! sin ๐ข
tan ๐ข ! = ๐ข! sec ! ๐ข
csc ๐ข ! = โ๐ข! csc ๐ข cot ๐ข
sec ๐ข ! = ๐ข! sec ๐ข tan ๐ข
cot ๐ข ! = โ๐ข! csc ! ๐ข
๐ข!
arcsin ๐ข ! = !
arccsc ๐ข =
1 โ ๐ข! โ๐ข!
arccos ๐ข ! =
!
๐ข ๐ข! โ 1
arcsec ๐ข =
โ๐ข! 1 โ ๐ข! ๐ข!
๐ข ๐ข! โ 1
arctan ๐ข ! =
๐ข! 1 + ๐ข!
โ๐ข! arccot ๐ข = 1 + ๐ข! !
Implicit Differentiation
๐ ๐ ๐๐
๐๐ฆ = ๐ฆ! ๐๐ฅ
Always pay attention to the variables ๐ ! ๐ฆ ๐๐ฅ
๐ ๐ฆ = 2๐ฆ๐ฆโฒ ๐๐ฅ ๐ ! ๐๐ฆ ๐ฆ = ๐๐ฆ !!! โก ๐๐ฆ !!! ๐ฆโฒ ๐๐ฅ ๐๐ฅ ๐ ๐๐ฆ ๐๐ฅ ๐ฅ๐ฆ = ๐ฅ +๐ฆ โก ๐ฅ๐ฆ ! + ๐ฆ ๐๐ฅ ๐๐ฅ ๐๐ฅ ๐๐ฆ ๐๐ฅ ๐ฆ ๐๐ฅ โ ๐ฅ ๐๐ฅ ๐ฆ โ ๐ฅ๐ฆโฒ ๐ ๐ฅ = โก ๐๐ฅ ๐ฆ ๐ฆ! ๐ฆ! 2 ๐ฆ
Chain/Power Rule Chain/Product Chain/Quotient
!!!
Logarithmic
๐ ๐ฆ! ln ๐ฆ = ๐๐ฅ ๐ฆ
Exponential
๐ ! ๐ = ๐ฆ ! ๐ ! ln ๐ ๐๐ฅ ๐ ! ๐ = ๐ฆ!๐! ๐๐ฅ ๐ ๐๐ฆ sin ๐ฆ = cos ๐ฆ โ
= cos ๐ฆ โ
๐ฆโฒ ๐๐ฅ ๐๐ฅ
Eulerโs Number Trigonometric Tangent Line
๐ ๐ฅ, ๐ฆ = 0,
๐ ๐, ๐
โ
๐ฆ! = ๐ ! ๐, ๐ ๐ฅ โ ๐ + ๐
Related Rates The idea for related rates, in general, is to find the equation that relates geometrically to the question, implicitly differentiate it, and then plug in the given variables and solve for the unknown. Here are a few examples i.e. just use the equation/formula that mimics the object in question. Right triangle ๐! + ๐ ! = ๐ ! โ ๐๐! ๐ก + ๐๐ ! ๐ก = ๐๐ ! ๐ก ๐๐ด = 2๐๐๐ ! ๐ ๐ก ๐๐ก 4 ๐๐ ๐ = ๐๐ ! โ ๐ ! ๐ก = 4๐๐ ! 3 ๐๐ก
Circle
๐ด = ๐๐ ! โ
Sphere
Hyperbolic Functions Notation ๐ ! โ ๐ !! sinh ๐ฅ = 2 2 sech ๐ฅ = ! ๐ + ๐ !!
csch ๐ฅ =
2 ! ๐ + ๐ !!
๐ ! + ๐ !! cosh ๐ฅ = 2
๐ ! โ ๐ !! ๐ ! + ๐ !! ๐ ! + ๐ !! coth ๐ฅ = ! ๐ โ ๐ !! tanh ๐ฅ =
Identities
sinh โ๐ฅ = โ sinh ๐ฅ cosh โ๐ฅ = cosh ๐ฅ ! ! cosh ๐ฅ โ sinh ๐ฅ = 1 1 โ tanh! ๐ฅ = sech! ๐ฅ sinh ๐ฅ + ๐ฆ = sinh ๐ฅ cosh ๐ฆ + cosh ๐ฅ sinh ๐ฆ cosh ๐ฅ + ๐ฆ = cosh ๐ฅ cosh ๐ฆ + sinh ๐ฅ sinh ๐ฆ !! ! sinh ๐ฅ = ln ๐ฅ + ๐ฅ + 1 , โโ โค ๐ฅ โค โ cosh!! ๐ฅ = ln ๐ฅ + ๐ฅ ! โ 1 , ๐ฅ โฅ 1 1 1+๐ฅ tanh!! ๐ฅ = ln , โ1 < ๐ฅ < 1 2 1โ๐ฅ
Derivatives Standard sinh ๐ข ! = ๐ขโฒ cosh ๐ข csch ๐ข ! = โ๐ข! csch ๐ข coth ๐ข Inverse sinh
!!
๐ข!
!
๐ข =
1 + ๐ข!
csch!! ๐ข ! = โ
cosh ๐ข ! = ๐ข! sinh ๐ข
tanh ๐ข ! = ๐ข! sech! ๐ข
sech ๐ข ! = โ๐ข! sech ๐ข tanh ๐ข
coth ๐ข ! = โ๐ข! csch! ๐ข
!!
cosh
๐ข! ๐ข 1 + ๐ข!
!
๐ข =
๐ข!
!!
tanh
๐ข! โ 1
sech!! ๐ข ! = โ
๐ข! ๐ข 1 โ ๐ข!
๐ข! ๐ข = 1 โ ๐ข! !
coth!! ๐ข ! =
๐ข! 1 โ ๐ข!
Antiderivatives & Integration Basic Rules Power Rule for antiderivatives Exponential Natural Log (case 1) Natural Log (case 2) Natural Log (case 3) Eulerโs Number (case 1) Eulerโs Number (case 2)
1 ๐ฅ ! + ๐ถ โ ๐ โ โ1 ๐+1 ๐! โ ๐ฆ= + ๐ถ ln ๐
๐ฆ! = ๐ฅ! โ ๐ฆ = ๐ฆ! = ๐!
1 โ ๐ฆ = ln ๐ฅ + ๐ถ ๐ฅ 1 1 ๐ฆ! = โ ๐ฆ = ln ๐๐ฅ + ๐ + ๐ถ ๐๐ฅ + ๐ ๐ ๐ฆ! =
๐ฆ! =
๐ข! ๐ฅ โ ๐ฆ = ln ๐ข ๐ฅ + ๐ถ ๐ข ๐ฅ 1 !" ๐ + ๐ถ ๐ 1 โ ๐ฆ = ๐ !"!! + ๐ถ ๐
๐ฆ ! = ๐ !" โ ๐ฆ = ๐ฆ ! = ๐ !"!!
Eulerโs Number (case 3)
๐ฆ ! = ๐ข! ๐ฅ ๐ !
Anti-Chain-Rule Substitution Method
๐ฆ ! = ๐ ! ๐ ๐ฅ ๐! ๐ฅ โ ๐ฆ = ๐ ๐ ๐ฅ
!
โ ๐ฆ = ๐!
!
+ ๐ถ + ๐ถ
Riemann Sum for Area Approximation !
๐ ๐ฅ!โ ๐ฅ๐ฅ ,
๐ด โ lim
!โโ
!!!
!
๐ฅ๐ฅ =
๐โ๐ , ๐
๐ฅ! = ๐ + ๐ โ ๐ฅ๐ฅ !
๐ = ๐๐
๐=
!!!
!!!
!
!
!
๐๐ ๐ฅ! = ๐ !!!
๐! =
๐ ๐ฅ! !!!
!!!
!
!
๐ ๐ฅ! ยฑ ๐ ๐ฅ! !!!
๐ ๐+1 2
=
!
๐ ๐ฅ! ยฑ !!!
!
๐ ๐+1 ๐ = 2 !
๐ ๐ฅ! !!!
๐ ๐ + 1 2๐ + 1 6
!!!
Area Approximation Rules Midpoint Rule ! !
๐โ๐ ๐ฅ! + ๐ฅ! ๐ฅ! + ๐ฅ! ๐ ๐ฅ ๐๐ฅ โ ๐ +๐ +โฏ ๐ 2 2
Trapezoid Rule
!
๐ ๐ฅ ๐๐ฅ โ
!
๐โ๐ ๐ ๐ฅ! + 2๐ ๐ฅ! + 2๐ ๐ฅ! + โฏ + 2๐ ๐ฅ!!! + ๐ ๐ฅ! 2๐
!
The Integral Notation โซ
!
lim
!โโ
!
๐(๐ฅ!โ ) ๐ฅ๐ฅ !!!
Definite Integral Properties
โก
๐(๐ฅ) ๐๐ฅ !
!
!
๐ ๐ฅ ๐๐ฅ = ๐น ๐ โ ๐น ๐
๐ ๐๐ฅ = ๐ ๐ โ ๐
!
!
!
!
๐ ๐ฅ ๐๐ฅ = 0
!
๐๐ ๐ฅ ๐๐ฅ = ๐
!
๐ ๐ฅ ๐๐ฅ
!
!
!
!
๐ ๐ฅ ๐๐ฅ = 0
!
๐ ๐ฅ ยฑ ๐ ๐ฅ ๐๐ฅ =
!!
!
โ ๐ โ๐ฅ = โ๐ ๐ฅ ! !!
!
๐ ๐ฅ
๐
๐ ๐ฅ ๐๐ฅ =
!
!
โ ๐ โ๐ฅ = ๐ ๐ฅ
๐ ๐ฅ ๐๐ฅ !
!
๐ ๐ฅ ๐๐ฅ + !
๐ ๐ฅ ๐๐ฅ ๐
even
NOTE: ๐ ๐ฅ โ
๐ ๐ฅ ๐๐ฅ โ
!
odd
!
๐ ๐ฅ ๐๐ฅ = 2
!
๐ ๐ฅ ๐๐ฅ ยฑ
๐ ๐ฅ ๐๐ฅ โ
!
๐ ๐ฅ ๐๐ฅ
!
๐ ๐ฅ ๐๐ฅ = โ !
๐ ๐ฅ ๐๐ฅ !
Fundamental Theorems Let ๐ ๐ฅ = ๐ข and ๐ ๐ฅ = ๐ฃ for the following: !
๐)
๐ฆ=
๐ ๐ก ๐๐ก โ !
๐ ๐ก ๐๐ก โ !
๐ ๐ก ๐๐ก โ !
๐ฆ ! = ๐ ๐ฃ โ ๐ฃ ! โ ๐ ๐ โ ๐! = ๐ ๐ฃ โ ๐ฃ ! โ 0 = ๐ ๐ฃ โ ๐ฃ !
!
๐ฆ=
๐ฆ ! = ๐ ๐ฃ โ ๐ฃ ! โ ๐ ๐ข โ ๐ขโฒ
!
๐ฆ=
๐ฆ ! = ๐ ๐ โ ๐ ! โ ๐ ๐ข โ ๐ข! = 0 โ ๐ ๐ข โ ๐ข! = โ๐ ๐ข โ ๐ขโฒ
Limit Definition of a Definite Integral !
๐๐)
๐(๐ฅ!โ ) ๐ฅ๐ฅ =
lim
!โโ
!!!
๐โ๐ ๐ฅ๐ฅ = , ๐
!
๐(๐ฅ) ๐๐ฅ = ๐น ๐ โ ๐น ๐ !
๐ฅ! = ๐ + ๐ โ ๐ฅ๐ฅ
Differential Equation (1st order) ๐๐ฆ ๐ฆ! = ๐! ๐ฅ โ = ๐ ! ๐ฅ โ ๐๐ฆ = ๐ ! ๐ฅ ๐๐ฅ โ ๐๐ฆ = ๐ ! ๐ฅ ๐๐ฅ ๐๐ฅ โ ๐ฆ + ๐! = ๐ ๐ฅ + ๐! โ ๐ฆ = ๐ ๐ฅ + ๐! โ ๐! = ๐ ๐ฅ + ๐! โก ๐ ๐ฅ + ๐ถ Common Integrals 1 ๐๐ฅ = ๐ฅ + ๐ถ ๐ ๐๐ฅ = ๐๐ฅ + ๐ถ ๐ฅ ๐๐ฅ = ๐ฅ ! + ๐ถ 2 1 ๐ฅ ! ๐๐ฅ = ๐ฅ ! + ๐ถ 3
๐ฅ ! ๐๐ฅ =
1 ๐ฅ !!! + ๐ถ ๐+1
1 ๐๐ฅ = ln |๐ฅ| + ๐ถ ๐ฅ
โ ๐ โ โ1 1 !" ๐ + ๐ถ ๐
๐ ! ๐๐ฅ = ๐ ! + ๐ถ
๐ !" ๐๐ฅ =
1 ๐๐ฅ = ln ๐ฅ + 1 + ๐ถ ๐ฅ+1
1 1 ๐๐ฅ = ln ๐๐ฅ + ๐ + ๐ถ ๐๐ฅ + ๐ ๐
๐ ! ๐ขโฒ ๐๐ข = ๐ ! + ๐ถ
๐ข! ๐๐ข = ln ๐ข + ๐ถ ๐ข
1 !"!! ๐ + ๐ถ ๐
๐ ๐ข ๐ขโฒ ๐๐ข = ๐น ๐ข + ๐ถ !
๐ ๐ฅ =๐น ๐ โ๐น ๐ !
๐ข! cos ๐ข ๐๐ข = sin ๐ข + ๐ถ
๐ข! sin ๐ข ๐๐ข = โ cos ๐ข + ๐ถ
๐ข! sec ! ๐ข ๐๐ข = tan ๐ข + ๐ถ
๐ข! csc ๐ข sec ๐ข ๐๐ข = โ csc ๐ข + ๐ถ
๐ข! sec ๐ข tan ๐ข ๐๐ข = sec ๐ข + ๐ถ
๐ข! csc ! ๐ข ๐๐ข = โ cot ๐ข + ๐ถ
๐ข! 1 โ ๐ข!
๐๐ข = arcsin ๐ข + ๐ถ
โ๐ข! 1 โ ๐ข!
๐๐ข = arccos ๐ข + ๐ถ
๐ !"!! ๐๐ฅ =
๐ข! ๐๐ข = arctan ๐ข + ๐ถ 1 + ๐ข!
Definite Integral Rules Substitution
!
Integration by Parts
๐ ๐ ๐ฅ ๐! ๐ฅ ๐๐ฅ =
! !
! !
๐ ๐ข ๐๐ข ! !
๐ ๐ฅ ๐! ๐ฅ ๐๐ฅ = ๐ ๐ฅ ๐ ๐ฅ
!
Let ๐ข=๐ ๐ฅ ๐๐ข = ๐ ! ๐ฅ ๐๐ฅ Then !
๐ข ๐๐ฃ = ๐ข๐ฃ
Trig Substitution ๐! โ ๐ฅ !
!
! !
! !
!
โ
๐ ๐ฅ ๐ ! ๐ฅ ๐๐ฅ
!
๐๐ฃ = ๐! ๐ฅ ๐๐ฅ ๐ฃ=๐ ๐ฅ
!
โ
๐ฃ ๐๐ข !
๐! + ๐ฅ !
๐ฅ ! โ ๐!
1 โ sin! ๐ = cos ! ๐
1 + tan! ๐ = sec ! ๐
sec ! ๐ โ 1 = tan! ๐
๐ฅ = ๐ sin ๐ ๐ ๐ ๐โ โ , 2 2
๐ฅ = ๐ tan ๐ ๐ ๐ ๐โ โ , 2 2
๐ฅ = ๐ sec ๐
Trig Identity tan ๐ฅ ๐๐ฅ =
sin ๐ฅ ๐๐ฅ = โ cos ๐ฅ
๐ โ 0,
1 โ
โ sin ๐ฅ ๐๐ฅ, cos ๐ฅ
๐ ln ๐ข ๐ฅ ๐๐ฅ
= โ ln cos ๐ฅ + ๐ถ = ln Partial Fractions ๐ ๐ฅ ๐ด ๐ต = + ๐ฅ ๐ฅ+1 ๐ฅ ๐ฅ+1 ๐ ๐ฅ ๐ด ๐ต๐ฅ + ๐ถ = + ! ! ๐ฅ ๐ฅ +1 ๐ฅ ๐ฅ +1
=
๐ 3๐ โจ ๐ โ ๐, 2 2
1 ๐๐ข ๐ข ๐๐ฅ
1 + ๐ถ = ln sec ๐ฅ + ๐ถ cos ๐ฅ
๐ ๐ฅ ๐ฅ! ๐ฅ + 1 ๐ ๐ฅ ๐ฅ ๐ฅ! + 1
!
=
๐ด ๐ต ๐ถ + !+ ๐ฅ ๐ฅ ๐ฅ+1
=
๐ด ๐ต๐ฅ + ๐ถ ๐ท๐ฅ + ๐ธ + ! + ! ๐ฅ ๐ฅ +1 ๐ฅ +1 !
Note: I edit, produce and design my resources without assistance. On occasion, I may overlook a typo; if you come across a typo, please email me via
[email protected] Copyright WeSolveThem.com | WESOLVETHEM LLC Published: July 2017, U.S.A.