mussel powered living shorelines for salt marsh erosion control

Report 4 Downloads 81 Views
MUSSEL POWERED LIVING SHORELINES  FOR SALT MARSH EROSION CONTROL Delaware Estuary Living Shoreline Initiative Delaware Estuary Living Shoreline Initiative (DELSI)

David Bushek, Danielle Kreeger, Laura Whalen Joshua Moody Laura Whalen, Joshua Moody,  Angela Padeletti

Erosion and accretion are natural  processes that create dynamic  habitats. Erosion in the mouth of the Maurice River.  Note the loss of meander  around Fowlers Island and Basket Flats around Fowlers Island and Basket Flats

Erosion threatens marshes and upland habitats, including developed properties. Erosion is accelerated by boat wakes, sea level rise, storms and other factors. Erosion control will become increasingly difficult with sea level rise and continue to  be a long‐term problem in coastal areas.

Hardening the shoreline is like  hardening your arteries hardening your arteries……

Shellfish as Natural Erosion Control South Carolina

New Jersey

No intertidal oyster  reefs in Delaware Bay NJDEP reluctant to  support oyster  restoration, banned  ‘shellfish shellfish gardening gardening’ in  in closed waters g g y gy p  Fringing oyster reefs absorb wave energy and trap sediments.   Oyster reefs also create habitat, filter water, and recycle nutrients. 

Ribbed Mussels: An Alternative To Oysters Similar ecological services – – – –

Stabilize sediments Water filtration Nutrient cycling Sediment deposition Sediment deposition

Not harvested – No poaching concerns N hi – No human health risk

Synergism with grass forms  levees Geukensia demissa

Can combine with other  tactics

Delaware Estuary Living Shoreline Initiative (DELSI) Purpose:   p identify living shoreline methods  for Delaware Bay Questions: 1) Can coir biologs and and mats  halt salt marsh erosion? halt salt marsh erosion? 2) Can ribbed mussels help?

Phase I Low energy

Intermediate High energy

Test installation methods  Test installation methods across a gradient of energy  and erosion.

DELSI Deployment

Installed multiple  configurations. configurations Total station surveys  tied installations to local tied installations to local  USGS benchmarks.  Established transects to  Established transects to monitor change.  

Grass and mussels survived  when planted in logs

Initial monitoring provided exciting results….

Juvenile mussels  il l recruited to coir  logs… …sediment trapping  with rich mats of  microphytobenthos

… the excitement  was palpable

But a few months later …..

Few logs remain at two sites. Marsh retreat was evident Marsh retreat was evident. Deflated logs = Deflated enthusiasm g

But the third site looked great! Sediment accumulated  Sediment accumulated behind most logs

Closing off ‘scallops’ worked best …enthusiasm restored!

Energy and biolog gy g survival Coir Log Survival

Relative Energy at DELSI Sites Yokoyama et. al. 2004

Logs Survived

12 10

14 12

Q Quantified energy gy as 6dissolution of plaster 4hemisspheres

Logs Moved or Deflated

8

10

# of Logs

P Plaster‐o‐p paris dissolution  index

16

8 6 4 2

2

0

0

Lowest at site D

B

C

D

B

Maurice River DELSI Sites

C Maurice River DELSI Sites

 Logs and mats survived best at low energy site Logs and mats survived best at low energy site  Logs did not work if tucked against marsh  Logs survived best when lined with oyster shell bags

D

What configuration  worked best? worked best? % Sedim ment Elevation In ncrease

120 100 80 60 40 20 0 Log

Double Log

Shellbag + Log

Treatment Type

Control

DELSI Phase 1 Conclusions

Coir biolog treatments: • attenuated waves • reduced erosion  • trapped sediments  • produced microphytobenthos • attracted mussels attracted mussels • amenable to seeding Optimal configuration: Optimal configuration: Double logs over mat with shell bags in front

Phase 2 h Install mat

Reinforce with shell bags

Replicate successful             treatment method treatment method Add grass and mussels Quantify faunal use

Install logs

Let sediment accumulate

Plant grass: Nursery plugs Salvaged clumps

Apply Mussels Three sizes < 1 cm < 2 cm > 2 cm

Two densities high low

Mussels applied in August 2010, moved into logs by November. November But method is cumbersome.

Four installations  completed July 2010 Monitor: Sediments Grass Fauna

Motile Fauna Seines: deployed at high tide (in pairs) retreived at low tide 

Minnow pots: deployed at low tide (10 per trt/ctrl) retrieved at low tide 24 hrs later

Seine Catch Data Control Treatment 1037 1536

Blue Crab Blue Crab

647

501

Mummichog Bay Anchovy White Perch White Perch Silverside Silver Perch W kfi h Weakfish Striped bass Black drum Wi Window pane flounder d fl d Atlantic menhaden Hogchoker American eel Spot Unidentified Summer Flounder Naked Gobi Toadfish

221 251 89 50 9 16 14 12 12 1 5 2 2 2 1 1

229 26 52 38 26 15 8 6

Seine Biomass  2000

Control

Treatment

1800

4

1600 1400

1 1 1 1

Bimass (gg)

Seine Species Grass Shrimp

1200

*

1000 800 600 400 200

N=8

N=4

N=4

Summer

Fall

0

1

All

Minnow Pot Species Control Treatment Mummichog 544 1564 458 14 1 6 3 1 2 1

424 6 9 2 3 2

Minnow Pot Biomass 160

Control

Treatment

140 120 Biomass (g))

Minnow Pot  Catch Data

Grass Shrimp American eel White Perch Blue Crab Silver Perch p j Spotfin mojarra Bunker Striped Bass

100 80 60 40 20 0 All

Summer

Fall

DELSI Summary

Next Steps

• Biologs provide a novel  tactic for Delaware Bay 

• Continue monitoring and  assessment 

• Trap sediments well

• Develop mussel integration  methods and methods and  validate/quantify their rol

• Grass and mussel plantings  survive i

• Expand sites • FFaunal use is similar to  l i i il t natural marsh

• Practitioners guide

Thanks to our funding agencies and field crews!