QMS 202 BUSINESS STATISTICS II

Report 68 Downloads 350 Views
1/9/2011

Dr.Chua

QMS202 BUSINESSSTATISTICSII InferentialStatistics allowsyoutoestimateunknown populationcharacteristics,i.e.population meanorpopulationproportion

WhatarerequiredforQMS202? Requiredtextbook BusinessStatistics,ATworSemesterTextforBusiness Management,SeventhCustomEdition forRyerson University,CompiledbyDarrylSmithandClareChua PrenticeHall,2010 2 R 2.RequiredCalculator i dC l l t CASIOFXr9750GII Casio FXr9750Gplusisacceptable TIr83calculatormaybeusedinthecourse.Howeverthe professorwillnotbesupportingitinclass.Youare responsibleforknowinghowtousetheTIr83functions. 3. Statisticalsoftwarer SPSS

OFFICE:TRS1r030 EMAIL:[email protected] TheSubjectfieldofeachemailshouldbecarefullycompleted,e.g.QMS202:sick. Itisrequestedthatemailsbesenttotheprofessoronlyifthequestion(s)being askedcannotwaittobeansweredinthenextscheduledlecture.Ortheanswers cannotbefoundinthecourseoutline. f

OfficeHours: Byappointmentonly

MethodofEvaluation Component

Percent/ Weight

1.

Number of Crib sheet allowed

Date

8.5x11inchcrib sheet(twor sided)

Quiz #1

12%

one

Week 4*

Test

20%

one

Week 8*

13%

one

W k 11* Week

Q i #2 Quiz

5%

Group project (SPSS) Final Exam

50%

TOTAL

Week 10*

three

100%

TBA * Please refer to handout for the test dates

TOPICS– SEQUENCE&SCHEDULE Week

Topic Standardized normal random variable Z. Confidence Intervals

Chapter 6 Handouts and chapter 9 in the textbook.

Answer questions in handouts and questions in ch.9 of the textbook.

3 to 4

Fundamentals of Hypothesis Testing: One-Sample Tests

Handouts and chapter 10 in the textbook.

Answer questions in handouts and questions in ch.10 of the textbook.

5 to 7

Two-Sample Tests Handouts and and d One-Way O W ANOVA. ANOVA chapter h t 11 iin the th textbook.

Answer questions in h d t and handouts d questions in ch.11 of the textbook.

8 to 9

Chi-Square Tests

Handouts and chapter 12 in the textbook.

Answer questions in handouts and questions in ch.12 of the textbook.

Simple Linear Regression

Handouts and chapter 13 in the textbook.

Answer questions in handouts and questions in ch.13 of the textbook.

12

I ntroduction to Multiple Regression

Chapter 14

Answer questions in handouts.

13

Review

10 to 11

Statisticscanbe….

Activities & Assignments

1 to 2

• Descriptive QMS102

QMS202

_collectinganddescribingthedata r CollectDatae.g.survey<SourcesofData> r PresentDatae.g.TablesandGraphs r CharacterizeData

•Inferential istheprocessofusingsampleresultstodrawconclusion aboutthecharacteristicsofapopulation. •Estimation isusedtoestimatepopulationparameters • Enablesustoestimateunknownpopulationcharacteristicssuchasa populationmeanorapopulationproportion

•HypothesisTesting

1

www.notesolution.com

1/9/2011

WhatIwillbecoveringforthenext 1½weeks?

Chapter9 ConfidenceIntervalEstimation Topicscovered: ConfidenceIntervalEstimationfortheMean(known) ConfidenceIntervalEstimationfortheMean(unknown) ConfidenceIntervalEstimationfortheProportion DeterminingSampleSize

Confidence Interval Estimation

Qualitative Data

Quantitative Data Population Mean P

Population Proportion E

X Normal and/or nt30? If no stop.

np t 5 and n(1-p) t 5? If no stop.

V known?

ESTIMATION TWOtypesofestimatesusedto estimatepopulationparameters: (1) Pointestimate(example:Cx,p) (2) Intervalestimate

V unknown? Limits: prz

p=x/n Limits: x r z

1 n

p(1  p) n

Limits: x r t s n df=n-1

Pointestimater MarginofError

Two things you need to find: (1) Confidence Interval and (2) Sample size

Estimations Population Parameters … S 

• Whatisapointestimate? isavalueofasingle samplestatistics. Example:samplemean,,isapoint x estimate ofthepopulationmean,P sampleproportion,p,isapoint Sample estimateofthepopulationproportion, Estimators E. sampling Cx • Whatisintervalestimate? p isarangeofnumbers,calledaninterval, s constructedaroundthepoint t t d d th i t estimate. Theconfidence intervalisconstructed suchthattheprobabilitythe populationparameterislocated somewherewithintheintervalis Inference known.

Pointestimater MarginError ConfidenceIntervalEstimationfortheMean Sample Estimators

Population Parameters … S 

sampling

Cx s p

x r confidence * s tan dard error x r zD / 2 * s tan dard error x r zD / 2 *

Pointestimate

V n MarginError

Inference

2

www.notesolution.com

1/9/2011

ConfidenceIntervalEstimation Sample Estimators

Population Parameters sampling

… S 

Cx p s

Inference

EXAMPLE Supposeyouareaskedtoestimate themeanheightofALL the studentswhotaketheQMS202 courseinWinter2011. Themeanheightofallthe studentsisanunknown populationmean,denotedbyP . Yourandomlyselectasampleof10 studentsandfoundthatthe samplemean,CX ,is___,whichis thepointestimateofthe populationmean,P. Howaccurateismyestimateof _____? Toanswerthisquestion,youmust constructaconfidenceinterval estimate.

ConfidenceIntervalEstimation Sample Estimators

Population Parameters sampling

… S 

Inference

Cx p s

EXAMPLE Population:ALLthestudentsin theclass(150students) POPULATIONDATA:heightmeasurement are______________________. Thepopulationmeantestscore,µ,= _____ Samplesize=10students Data: SampleMean=CX=<meanwillbe calculatedinclass>

Objective Learnhowtoconstruct andinterpret confidenceintervalestimates x r

Construct 95%CI

z

* D /2

V n

42.1 d P d 62.5

Beforelearningtoconstructthe confidenceinterval,youneedto know; 1. CentralLimitTheorem 2. Zrvalue

Interpretation: A95%confidenceintervalforthepopulationaverage (mean) testscoreis(42.1,62.5). Note:DefineXor Note:DefineXor… …

Note: WeusedCx toestimate….Therefore,ourobjectiveistousethesampling distributionofCx tosaysomethingabout….

CentralLimitTheorem Assumethatthepopulationfromwhichwewillrandomlyselecta sampleofnmeasurementshasameanP andstandard deviationV.Thenthepopulationofallpossiblesamplemeans has:

Px P 1. Mean: V 2. standarddeviation: V x n 3a.Ifpopulationofindividualmeasurementsis x normal,isnormal 3b.Ifpopulationofindividualmeasurements x isnotnormal,isnormalifsamplesizeis largeenough(nt 30)

Beforelearningtoconstructthe confidenceinterval,youneedto know; 1. CentralLimitTheorem 2. Zrvalue Note: Weusedxtoestimate….Therefore,ourobjectiveistousethesampling distributionofxtosaysomethingabout….

3

www.notesolution.com

1/9/2011

Zrvalue StandardNormalDistribution CharacteristicsoftheStandardNormal WhydowehavetolearnaboutStandard Normal? Example: l X=Amountoftimeauniversitystudentspendssleepingdaily,followinga normaldistributionwithmean…=8hoursandstandarddeviation=1.5 hours SupposeSamspends9.5hourssleepingonenight. Howdoeshissleeptimecomparetotheaverage?

Zvalue StandardNormalDistribution CharacteristicsoftheStandardNormal WhydowewanttolearnaboutStandardNormal? Example: X=Amountoftimeauniversitystudentspendssleepingdaily,followinganormal distribution with mean …=8 distributionwithmean… 8hoursandstandarddeviation hours and standard deviation =1 1.5hours 5 hours SupposeSamspends9.5hourssleepingonenight. Didhesleepa“lotmore”thantheaverage? 1.Howmuchmoreis9.5hoursthantheaverageof8hours?1.5hours 2.Calculatehowmanystandarddeviationfromtheaverage? Asyoucansee1.5hoursequals1standarddeviation WecansaythatSam’ssleeptimewas1stddevmorethantheaverage. WHICHISABETTERMEASURE?1or2

TransformationFormula WHICHISABETTERMEASURE?1or2 2.Calculatehowmanystandarddeviationfromtheaverage? Asyoucansee1.5hoursequals1standarddeviation WecansaythatSam’ssleeptimewas1stddevmorethantheaverage. Mathematically, X=9.5,µ=8,=1.5

Z

ConvertanynormalrandomvariableXtostandardizednormal randomvariableZ.

Z

X P V

IfXisnormallydistributedN(…,),thestandardizedvariableZ hasastandardnormaldistributionwithmean=0(or…=0)and standard deviation 1 (or =1), standarddeviation1(or 1),denotedN(0,1) denoted N(0,1)

X P V

Thisiscalledthe“relativestanding”r knownaszrvalue “transformationofeachxrvaluetoazrvalue” …r3

…r2

…r1

…

…+1

Example

…+2

…+3

 =2

ThetimetodownloadtheWebpageisnormally distributedwithamean…=7secondsanda standarddeviation=2seconds What is the Z value for a download time of 9 WhatistheZvalueforadownloadtimeof9 seconds? Z

97 2

…r3

1

…r1

…

…+1

1

…r2 3

5

7

9

…+2 11

…+3 13

r3

r2

r1

0

+1

+2

+3

Xscale(µ=7, =2) Zscale(µ=0, =1)

Answer:adownloadtimeof9secondsisequivalentto1standardizedunit

4

www.notesolution.com

1/9/2011

Example

 =2

ThetimetodownloadtheWebpageisnormally distributedwithamean…=7secondsanda standarddeviation=2seconds What is the Z value for a download time of 1 WhatistheZvalueforadownloadtimeof1 second? Z

1 7 2

…r3

3

…r1

…

…+1

1

…r2 3

5

7

9

…+2 11

…+3 13

r3

r2

r1

0

+1

+2

+3

Xscale(µ=7, =2) Zscale(µ=0, =1)

Answer:adownloadtimeof1secondisequivalentto3standardizedunits

FindingAreasUsingStandardizedvariables

FindingAreasUsingStandardizedvariables

 =7

 =7

Area=?

Area=?

X …=75

X=86 Z=?

…=75 Z=? X=86 Solution: Z=(xr…)/ Z=(86r75)/7=1.5714

Example: SamtookanEconomicsexamandscored 86points.Theclassmeanwas75withasstandard deviationof7.WhatpercentileisSamin?

FindingAreasUsingStandardizedvariables

GivenAreafindZvalue

 =1

 =1

Area=?

Area==0.95

Z …=0

Usingthecalculatortofindthearea: (1) Usingzrscoretofindarea: P(Z