Supporting information for: Prediction and Characterization of MXene ...

Report 9 Downloads 48 Views
Supporting information for: Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries Yu Xie,∗,† Yohan Dall’Agnese,‡,¶ Michael Naguib,¶,k Yury Gogotsi,∗,¶ Michel W. Barsoum,¶ Houlong L. Zhuang,† and Paul R. C. Kent†,§ Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA, Universit´e Paul Sabatier, CIRIMAT UMR CNRS 5085, 118 route de Narbonne, 31062 Toulouse, France, Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA, and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA E-mail: [email protected]; [email protected]



To whom correspondence should be addressed Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ‡ Universit´e Paul Sabatier, CIRIMAT UMR CNRS 5085, 118 route de Narbonne, 31062 Toulouse, France ¶ Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA § Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA k Current address: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37381, USA †

S1

Table S1: Metal ion adsorption energies (eV/atom) on OH terminated MXene monolayers. Ti2 C(OH)2 V2 C(OH)2 Nb2 C(OH)2 Ti3 C2 (OH)2

Li Na K Mg Ca Al 0.124 0.304 0.054 1.247 0.342 2.149 -0.077 0.194 -0.024 0.847 0.232 1.632 0.17 0.282 -0.024 1.278 0.46 2.238 0.171 0.428 0.142 1.356 0.541 2.31

Table S2: Metal ion adsorption energies (eV/atom) for the first metal layer on O terminated MXene monolayers. Ti2 CO2 V2 CO2 Nb2 CO2 Ti3 C2 O2

Li -1.364 -1.539 -1.019 -1.404

Na K Mg Ca Al -0.76 -0.163 -0.683 -0.798 0.127 -0.876 -0.163 -0.94 -0.889 0.022 -0.665 -0.177 -0.337 -0.571 0.46 -0.829 -0.238 -0.761 -0.804 0.145

Table S3: Capacities (mAhg−1 ) corresponding to one metal layer on O terminated MXene monolayers. Ti2 CO2 V2 CO2 Nb2 CO2 Ti3 C2 O2

Li 348 335 219 250

Na 288 279 194 217

K 246 239 174 192

S2

Mg 570 552 385 432

Ca 487 474 345 382

Al 552 536 377 422

Table S4: Metal ion adsorption energies (eV/atom) for the second metal layer on O terminated MXene monolayers. Ti2 CO2 A2 V2 CO2 A2 Nb2 CO2 A2 Ti3 C2 O2 A2

Li Na K Mg Ca 0.093 0.161 0.983 -0.103 0.341 0.089 0.186 1.095 -0.1 0.319 0.099 0.087 0.762 -0.131 0.305 0.096 0.135 1.057 -0.092 0.413

Table S5: Mg capacities (mAhg−1 ) for up to three layers on O terminated MXene monolayers. Ti2 CO2 V2 CO2 Nb2 CO2 Ti3 C2 O2

1 2 3 570 908 1132 552 885 1108 385 657 859 432 724 934

S3

Table S6: Decomposition energies of O terminanted MX monolayers with different metal ions (eV/formula). Ti2 CO2 V2 CO2 Nb2 CO2 Ti3 C2 O2

Li 0.616 0.013 0.036 0.537

Na 1.711 0.855 1.411 1.671

K 1.589 0.570 1.347 1.456

S4

Mg -0.025 -0.639 -0.573 -0.086

Ca -0.413 -1.231 -0.919 -0.579

Al -0.074 -1.743 -2.144 -0.351

Table S7: Metal ion adsorption energies (eV/atom) of the first metal layer on bare MXene monolayers. Ti2 C V2 C Nb2 C Ti3 C2

Li Na K Mg -0.554 -0.315 0.474 -0.574 -0.528 -0.223 0.519 -0.653 -0.574 -0.363 0.254 -0.779 -0.501 -0.262 0.579 -0.524

Ca 0.133 0.099 -0.164 0.206

Al -0.846 -0.955 -0.896 -0.742

Table S8: Metal ion capacities (mAhg−1 ) corresponding to one metal layer on bare MXene monolayers. Ti2 C V2 C Nb2 C Ti3 C2

Li Na K Mg Ca 439 348 144 687 285 418 335 139 661 276 252 219 97 435 193 294 250 108 496 216

Al 992 957 638 724

Table S9: Metalion adsorption energies (eV/atom) for the second metal layer on bare MXene monolayers. Ti2 CA2 V2 CA2 Nb2 CA2 Ti3 C2 A2

Li 0.032 0.022 0.015 0.045

Na Mg Al 0.124 -0.105 -0.062 0.121 -0.058 -0.116 0.07 -0.075 -0.076 0.152 -0.118 -0.127

S5

Table S10: Mg capacities (mAhg−1 ) for up to three layers on O terminated MXene monolayers. Ti2 CA2 V2 CA2 Nb2 CA2 Ti3 C2 A2

Mg Al 1050 1488 1000 1448 729 1050 812 1165

Table S11: Comparison of capacities, which are calculated using the equation described in Computational Methods section. The capacities in the brackets correspond to double layer adsorption. Na K Mg Ca Al a 25% DV defective graphene.

Ti2 CO2 Ti2 C Sn 288 348 492 S2 246 144 570 (908) 687 (1050) 641 S3 487 285 552 992 (1488)

Bi

Sb 421 S2

P 804 S2

DGa , S1 643

328 S4 913

AF , where the weight Table S12: Comparison of capacities that are calculated via CA = MnAMZXene of the adsorbent is neglected. The capacities in the brackets correspond to double layer adsorption. For the same material, the metal capacity is the same if they can carry the same number of charges.

Na K Mg Ca Al

Ti2 CO2 382 382 765 (1531) 765 765

Ti2 C Sn 496 847 S2 331 992 (1985) 903 S3 496 1488 (2977)

S6

Bi

Sb 660 S2

P 2560 S2

DG S1 1450

385 S4 2900

Figure S1: Calculated reaction energy pathways for reaction 1 after ion adsorption.

S7

Figure S2: Transferred charges from metal adatoms to O terminated MXene monolayers.

S8

Figure S3: Adsorption energies of Mg for up to 3 extra layers.

S9

Figure S4: Relative distance changes between two metal layers on Ti2 CO2 monolayers and in bulk metals.

S10

Figure S5: (a) The ions diffusion pathways on O-terminated MXene nanosheets. (a) initial, (b) transition and (c) final state of diffusion pathway.

S11

Figure S6: Schematic illustration of the decomposition of O terminated MXenes.

S12

Figure S7: (a-f) ELFs and (g-l) projected DOS of bare MXenes with one metal layer.

S13

Figure S8: Projected DOS of bare MXenes with one Ca layer.

S14

Figure S9: (a-d) ELFs and (e-h) projected DOS of bare MXenes with two metal layers.

S15

Figure S10: (a) Ion diffusion energies and (b) pathways on bare MXene nanosheets.

References (S1) Datta, D.; Li, J.; Shenoy, V. B. Defective Graphene as a High-Capacity Anode Material for Na-and Ca-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 1788–1795. (S2) Qian, J.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. Synergistic Na-Storage Reactions in Sn4P3 as a High-Capacity, Cycle-stable Anode of Na-Ion Batteries. Nano Lett. 2014, 14, 1865–1869. (S3) Singh, N.; Arthur, T. S.; Ling, C.; Matsui, M.; Mizuno, F. A High Energy-Density Tin Anode for Rechargeable Magnesium-Ion Batteries. Chem. Commun. 2012, 49, 149–151. (S4) Arthur, T. S.; Singh, N.; Matsui, M. Electrodeposited Bi, Sb and Bi1−x Sbx Alloys as Anodes for Mg-Ion Batteries. Electrochem. Commun. 2012, 16, 103–106.

S16