Supporting information for: Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries Yu Xie,∗,† Yohan Dall’Agnese,‡,¶ Michael Naguib,¶,k Yury Gogotsi,∗,¶ Michel W. Barsoum,¶ Houlong L. Zhuang,† and Paul R. C. Kent†,§ Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA, Universit´e Paul Sabatier, CIRIMAT UMR CNRS 5085, 118 route de Narbonne, 31062 Toulouse, France, Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA, and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA E-mail:
[email protected];
[email protected] ∗
To whom correspondence should be addressed Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ‡ Universit´e Paul Sabatier, CIRIMAT UMR CNRS 5085, 118 route de Narbonne, 31062 Toulouse, France ¶ Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA § Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA k Current address: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37381, USA †
S1
Table S1: Metal ion adsorption energies (eV/atom) on OH terminated MXene monolayers. Ti2 C(OH)2 V2 C(OH)2 Nb2 C(OH)2 Ti3 C2 (OH)2
Li Na K Mg Ca Al 0.124 0.304 0.054 1.247 0.342 2.149 -0.077 0.194 -0.024 0.847 0.232 1.632 0.17 0.282 -0.024 1.278 0.46 2.238 0.171 0.428 0.142 1.356 0.541 2.31
Table S2: Metal ion adsorption energies (eV/atom) for the first metal layer on O terminated MXene monolayers. Ti2 CO2 V2 CO2 Nb2 CO2 Ti3 C2 O2
Li -1.364 -1.539 -1.019 -1.404
Na K Mg Ca Al -0.76 -0.163 -0.683 -0.798 0.127 -0.876 -0.163 -0.94 -0.889 0.022 -0.665 -0.177 -0.337 -0.571 0.46 -0.829 -0.238 -0.761 -0.804 0.145
Table S3: Capacities (mAhg−1 ) corresponding to one metal layer on O terminated MXene monolayers. Ti2 CO2 V2 CO2 Nb2 CO2 Ti3 C2 O2
Li 348 335 219 250
Na 288 279 194 217
K 246 239 174 192
S2
Mg 570 552 385 432
Ca 487 474 345 382
Al 552 536 377 422
Table S4: Metal ion adsorption energies (eV/atom) for the second metal layer on O terminated MXene monolayers. Ti2 CO2 A2 V2 CO2 A2 Nb2 CO2 A2 Ti3 C2 O2 A2
Li Na K Mg Ca 0.093 0.161 0.983 -0.103 0.341 0.089 0.186 1.095 -0.1 0.319 0.099 0.087 0.762 -0.131 0.305 0.096 0.135 1.057 -0.092 0.413
Table S5: Mg capacities (mAhg−1 ) for up to three layers on O terminated MXene monolayers. Ti2 CO2 V2 CO2 Nb2 CO2 Ti3 C2 O2
1 2 3 570 908 1132 552 885 1108 385 657 859 432 724 934
S3
Table S6: Decomposition energies of O terminanted MX monolayers with different metal ions (eV/formula). Ti2 CO2 V2 CO2 Nb2 CO2 Ti3 C2 O2
Li 0.616 0.013 0.036 0.537
Na 1.711 0.855 1.411 1.671
K 1.589 0.570 1.347 1.456
S4
Mg -0.025 -0.639 -0.573 -0.086
Ca -0.413 -1.231 -0.919 -0.579
Al -0.074 -1.743 -2.144 -0.351
Table S7: Metal ion adsorption energies (eV/atom) of the first metal layer on bare MXene monolayers. Ti2 C V2 C Nb2 C Ti3 C2
Li Na K Mg -0.554 -0.315 0.474 -0.574 -0.528 -0.223 0.519 -0.653 -0.574 -0.363 0.254 -0.779 -0.501 -0.262 0.579 -0.524
Ca 0.133 0.099 -0.164 0.206
Al -0.846 -0.955 -0.896 -0.742
Table S8: Metal ion capacities (mAhg−1 ) corresponding to one metal layer on bare MXene monolayers. Ti2 C V2 C Nb2 C Ti3 C2
Li Na K Mg Ca 439 348 144 687 285 418 335 139 661 276 252 219 97 435 193 294 250 108 496 216
Al 992 957 638 724
Table S9: Metalion adsorption energies (eV/atom) for the second metal layer on bare MXene monolayers. Ti2 CA2 V2 CA2 Nb2 CA2 Ti3 C2 A2
Li 0.032 0.022 0.015 0.045
Na Mg Al 0.124 -0.105 -0.062 0.121 -0.058 -0.116 0.07 -0.075 -0.076 0.152 -0.118 -0.127
S5
Table S10: Mg capacities (mAhg−1 ) for up to three layers on O terminated MXene monolayers. Ti2 CA2 V2 CA2 Nb2 CA2 Ti3 C2 A2
Mg Al 1050 1488 1000 1448 729 1050 812 1165
Table S11: Comparison of capacities, which are calculated using the equation described in Computational Methods section. The capacities in the brackets correspond to double layer adsorption. Na K Mg Ca Al a 25% DV defective graphene.
Ti2 CO2 Ti2 C Sn 288 348 492 S2 246 144 570 (908) 687 (1050) 641 S3 487 285 552 992 (1488)
Bi
Sb 421 S2
P 804 S2
DGa , S1 643
328 S4 913
AF , where the weight Table S12: Comparison of capacities that are calculated via CA = MnAMZXene of the adsorbent is neglected. The capacities in the brackets correspond to double layer adsorption. For the same material, the metal capacity is the same if they can carry the same number of charges.
Na K Mg Ca Al
Ti2 CO2 382 382 765 (1531) 765 765
Ti2 C Sn 496 847 S2 331 992 (1985) 903 S3 496 1488 (2977)
S6
Bi
Sb 660 S2
P 2560 S2
DG S1 1450
385 S4 2900
Figure S1: Calculated reaction energy pathways for reaction 1 after ion adsorption.
S7
Figure S2: Transferred charges from metal adatoms to O terminated MXene monolayers.
S8
Figure S3: Adsorption energies of Mg for up to 3 extra layers.
S9
Figure S4: Relative distance changes between two metal layers on Ti2 CO2 monolayers and in bulk metals.
S10
Figure S5: (a) The ions diffusion pathways on O-terminated MXene nanosheets. (a) initial, (b) transition and (c) final state of diffusion pathway.
S11
Figure S6: Schematic illustration of the decomposition of O terminated MXenes.
S12
Figure S7: (a-f) ELFs and (g-l) projected DOS of bare MXenes with one metal layer.
S13
Figure S8: Projected DOS of bare MXenes with one Ca layer.
S14
Figure S9: (a-d) ELFs and (e-h) projected DOS of bare MXenes with two metal layers.
S15
Figure S10: (a) Ion diffusion energies and (b) pathways on bare MXene nanosheets.
References (S1) Datta, D.; Li, J.; Shenoy, V. B. Defective Graphene as a High-Capacity Anode Material for Na-and Ca-Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 1788–1795. (S2) Qian, J.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. Synergistic Na-Storage Reactions in Sn4P3 as a High-Capacity, Cycle-stable Anode of Na-Ion Batteries. Nano Lett. 2014, 14, 1865–1869. (S3) Singh, N.; Arthur, T. S.; Ling, C.; Matsui, M.; Mizuno, F. A High Energy-Density Tin Anode for Rechargeable Magnesium-Ion Batteries. Chem. Commun. 2012, 49, 149–151. (S4) Arthur, T. S.; Singh, N.; Matsui, M. Electrodeposited Bi, Sb and Bi1−x Sbx Alloys as Anodes for Mg-Ion Batteries. Electrochem. Commun. 2012, 16, 103–106.
S16