Supporting information for: Systematic Improvement of Density ...

Report 4 Downloads 21 Views
Supporting information for: Systematic Improvement of Density-Functionals Through Parameter-Free Hybridization Schemes Éric Brémond,∗,† Marika Savarese,† Ángel José Pérez-Jiménez,‡ Juan Carlos Sancho-García,‡ and Carlo Adamo∗,¶,§,† CompuNet, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genoa, Italy, Departamento de Química Física, Universidad de Alicante, E-03080 Alicante, Spain, Institut de Recherche de Chimie Paris, IRCP CNRS UMR-8247, École Nationale Supérieure de Chimie de Paris, Chimie ParisTech, 11 rue P. et M. Curie, F-75231 Paris Cedex 05, France, and Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France E-mail: [email protected]; [email protected]



To whom correspondence should be addressed Istituto Italiano di Tecnologia ‡ Universidad de Alicante ¶ Chimie ParisTech § Institut Universitaire de France †

S1

Atomization Energies 50 PURE HYB0 QIDH 34.52

40 35 30

6.66

BLY P

6.79

12.27

15.24 5.54 4.26

1 PW9

4.90

TPSS

9.39 6.90

12.78

PBE h

4.59 4.17

9.95

TCA

8.06 10.35 5.98

mol PBE

APB E

4.68

8.02 8.06

13.53

E revP B

6.41

8.64

9.04

PBE sol

0

5.55 4.32

10 5

17.13

18.50 14.66

20 15

21.00

25

PBE

Mean Absolute Deviation (kcal mol−1 )

45

Figure S1: Mean absolute deviations for the AE6 test set as function of the pure densityfunctionals hybridized according to the HYB0 and QIDH models. All the reactions are evaluated with the quadruple-ζ def2-QZVP basis set.

S2

0

S3 18.26

15.29

21.40

35

30

25 9.61 7.96

5.74

8.47

4.70 4.89 5.04

2.78 3.96

5.35 5.03 5.41

2.77 4.33

9.78

3.86 7.30 6.14

40

4.76 7.37 5.90

G2/55

8.38 2.95 4.72

0

7.53 3.11 4.36

6.57 9.52 6.88

19.80

40

6.93 10.75 7.87

5.58 4.30

6.63 7.77 6.25

4.09 4.29

13.92

5.90 6.00 6.74

6.30 4.86 6.12

4.54 7.32 6.79

3.51

8.37

G1/31

BLY P

1

PW9

TPSS

h

PBE

8.82

6.01 6.08 6.29

6.16 5.00 5.68

15

TCA

8.57 7.45 6.67

9.93

4.74 6.87 6.20

17.34

45

mol

5.29 5.69

10.76 7.02

6.85

3.16

7.44

9.34

45

PBE

E

5

APB

10

BE

45 41.43

20

revP

15

9.42

25 22.29

5 2.87 4.43

20

sol

20 8.23

25

PBE

5 3.00 4.12

10

17.39

Mean Absolute Deviation (kcal mol−1 ) 10

5.28 4.32

Mean Absolute Deviation (kcal mol−1 ) 15

PBE

Mean Absolute Deviation (kcal mol−1 )

50

PURE HYB0 QIDH

35

30

0

G2/148

40

35

30

Figure S2: Mean absolute deviations for the G1/31, G2/55 and G2/148 test sets as function of the pure density-functionals hybridized according to the HYB0 and QIDH models. All the reactions are evaluated with the triple-ζ 6-311+G(3df, 2pd ) basis set.

Noncovalent Binding Energies 6 PURE HYB0 QIDH 4.35

5 4.00

4.5

3.62

4

0.85

1.07

2.00 1.92 0.98

0.89

0.88

0.86

0.86

1.06

1.20

1.5

0.86

2

1

2.96 2.66

2.86 2.73

2.15 2.06

2.41 2.35 1.99 1.87

2.5

2.49 2.40

3

3.20

3.5

2.18 2.09

Mean Absolute Deviation (kcal mol−1 )

5.5

BLY P

1 PW9

TPSS

PBE h

TCA

mol PBE

APB E

E revP B

PBE sol

0

PBE

0.5

Figure S3: Mean absolute deviations for the S22/full test set as function of the pure densityfunctionals hybridized according to the HYB0 and QIDH models. All the reactions are evaluated with the triple-ζ cc-pVTZ basis set.

S4

0

S5 1.24

0.73

1.13

0.82

2.17 2.20

2.40 2.39

3.67

3.26 3.05

3.14 3.11

4.27 1.22

0.70

1.18

0.78

0.71

1.05

2.78 2.61

3.09 2.91

4.64

4.44 3.93

4.23 3.99

3.62 3.38

6.07

5.74

dispersion dominant

BLY P

1

PW9

TPSS

h

PBE

0.82

1.01

2.69 2.67

0.99

3.51 3.28

5

TCA

mol

6

PBE

0.97

2.64 2.61

6

E

1.63

5.11

1.24 0.73

1.03 0.89 1.13

1.13 0.96 0.62

0.92 0.85 1.00

1.94

1.17 1.04 1.69

1.12 0.96 0.61

1.05 0.89 0.67

0.54

1.93

2.73

2.40 1.97 1.72

6

APB

1.41

4.25 3.78

4

BE

5

revP

1 0.44

1.91 1.88

2

0.47

2 1.69 1.77

0.90 0.86 0.94

2

sol

1 0.80

Mean Absolute Deviation (kcal mol−1 ) 3

PBE

3

0.84

3 3.17 2.95

4

2.45 2.43

Mean Absolute Deviation (kcal mol−1 ) 1

PBE

Mean Absolute Deviation (kcal mol−1 )

7

H-bond dominant PURE HYB0 QIDH

5

4

0

0

mixed

Figure S4: Mean absolute deviations for the S22/full subsets — hydrogen bond dominant (S22/HB), dispersion dominant (S22/DD) and mixed interactions (S22/MX) — as function of the pure density-functionals hybridized according to the HYB0 and QIDH models. All the reactions are evaluated with the triple-ζ cc-pVTZ basis set.

Basis set Convergence

PBE revPBE

1.38 0.79

1.37 0.83

1.20 0.62

0.84

1

1.20

1.5

1.33

2

0.86

Mean Absolute Deviation (kcal mol−1 )

2.5

0.5

X-V QZ RIJ COS

RIJ

VQZ

K-a VTZ

Z -VT RIJ C

OSX

VTZ

0

Figure S5: Mean absolute deviations for the S22/full test set as function of the size of the correlation consistent basis sets (aug)-cc-pVnZ. All the reactions are evaluated with the QIDH double-hybrid density-functional model.

S6

Barrier Heights PURE HYB0 QIDH 10.30

12

7.73

8.48

8.18

8.27 7.36

6.50

8

7.30

7.55

8.25

10

3.27

3.83

PW9

1

1.00

1.12

1.49

TPSS

1.14

PBE h

BLY P

4.05

3.64 1.73

TCA

1.30

PBE

mol

1.26

APB E

2.76

2.86

3.06 1.30

E revP B

PBE sol

PBE

0

1.17

2

1.33

2.58

4

5.26

6 3.65

Mean Absolute Deviation (kcal mol−1 )

14

Figure S6: Mean absolute deviations for the DBH24/08 test set as function of the pure density-functionals hybridized according to the HYB0 and QIDH models. All the reactions are evaluated with the triple-ζ aug-cc-pVTZ basis set.

S7

3.65

2.09

3.13

5.28

PBE

0

2.99

P B3LY

SX N12-

F M06H

M06

H -QID

PBE

2-SX

4.23

3.15 4.40

2.50 5.14

2.19

4.32 1.17

3.86

0.86

0.56 4.40 1.31

1.51 2.04 2.59

MN1

LYP

0.91 2.00 2.99

B2-P

X

M11

2-PL YP

0

2.44

2

ω B97

1.87

4

0.54

6

3.93 1.12

1.17

8

0.66

0.68

10

2.12

G2/148 DBH24/08 S22/full

12

mPW

Mean Absolute Deviation (kcal mol−1 )

Cumulative Performances

Figure S7: Cumulative mean absolute deviations for the PBE-based HYB0 and QIDH models (red fonts), and for some standard and modern density-functionals. The performances are evaluated on the G2/148 (blue) atomization energy dataset, on the DBH24/08 (magenta) barrier height dataset, and on the S22/full (green) nonbonded interaction dataset. All the reactions of the G2/148, DBH24/08 and S22/full test sets are evaluated with the 6-311+G(3df, 2pd ), aug-cc-pVTZ and cc-pVTZ basis sets respectively.

S8

Computational Methods All the computations were done with the Gaussian program package S1 except for resolution of identity-based calculations which were done with the Orca software S2 making use of the RIJCOSX S3,S4 approach. The semilocal density-functionals and their respective single and double hybridization forms which were not commercialized with Gaussian’09 were fully implemented within the software. An ultrafine integration grid was set for meta-GGA-based computations. The Ahlrichs quadruple-ζ and the Pople triple-ζ 6-311+G(3df, 2pd ) basis sets were used to to evaluate atomization energies of systems included in the AE6 S5 and G2/148 S6–S8 datasets respectively, while the Dunning triple-ζ aug-cc-pVTZ and cc-pVTZ basis sets were employed to compute the barrier height energies and the weakly binding energies of complexes involved in the DBH24/08 S9 and S22 S10,S11 datasets respectively.

References (S1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09 Revision D.01. 2009; Gaussian Inc. Wallingford

S9

CT. (S2) Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73–78. (S3) Neese, F. J. Comput. Chem 2003, 24, 1740–1747. (S4) Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Chem. Phys. 2009, 356, 98–109. (S5) Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 8996–8999. (S6) Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622–5629. (S7) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221–7230. (S8) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063–1079. (S9) Zheng, J.; Zhao, Y.; Truhlar, D. G. J. Chem. Theory Comput. 2009, 5, 808–821. (S10) Jurecka, P.; Sponer, J.; Cerny, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985–1993. (S11) Marshall, M. S.; Burns, L. A.; Sherrill, C. D. J. Chem. Phys. 2011, 135, 194102.

S10