Supporting Information
Molybdenum Polysulfide Anchored on Porous Zr–Metal Organic Framework to Enhance the Performance of Hydrogen Evolution Reaction Xiaoping Dai,*,†,§ Mengzhao Liu,†,§ Zhanzhao Li,† Axiang Jin,† Yangde Ma,† Xingliang Huang,† Hui Sun,† Hai Wang,‡ Xin Zhang*,†
a
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249,
China b
National Institute of Metrology, Beijing 100013, China
E–mail:
[email protected];
[email protected] Synthesis of Control Samples………………………………………………………………………S2 Supporting figures and table …………………………………………………………………S3-S16 References …………………………………………………………………………………… S17-S19
S1
Synthesis of Control Samples Synthesis of bulk MoS2 The bulk MoS2 was prepared with a hydrothermal method. Typically, 22.4 mg of (NH4)2MoS4 was added into 10 mL of DMF solution and sonicated for approximately 20 min at room temperature until a homogeneous solution was achieved. After that, 0.1 mL of N2H4·H2O was added to the above solution and was further sonicated for 10 min before transferred to a 25 mL Teflon–lined autoclave. It was heated in an oven at 220°C for 24 h and cooled down to room temperature naturally. Product was collected by centrifugation at 9000 rpm for 15 min, washed with DI water and ethanol at least three times respectively to remove DMF. Finally, product was re–dispersed in DI water with a concentration of 1 mg/mL, and dried with freeze–drying equipment, which was donated as bulk MoS2. Preparation of UiO–66 In a typical synthesis, ZrCl4 (149 mg, 0.64 mmol) and Terephthalic acid (TA, 106 mg, 0.64 mmol) were thoroughly dissolved in DMF (18 mL), and were further sonicated for 10 min. It was transferred into a 40 mL Teflon–lined stainless steel autoclave, which was then sealed and heated at 100 oC for 24 h. After cooling, the resultant precipitate was collected by centrifugation, and washed with absolute ethanol for several times, followed by drying under vacuum at 80 oC for 10 h. Preparation of molybdenum polysulfide anchored UiO–66 The synthetic procedure of molybdenum polysulfide anchored UiO–66 was similar as the original UiO–66, except for the addition of (NH4)2MoS4 before solvothermal treatment. The obtained sample was denoted as UiO–66–Mo–5 with mole ratio of Mo/Zr=0.5.
S2
Intensity(a.u.) 5
10
15
20
25
30
35
40
45
2 Theta (Degree) Figure S1 Comparison of XRD patterns of UiO–66–NH2–Mo–5. Bottom: As–synthesized MOFs (from DMF). Top: Ethanol–exchanged MOFs.
S3
Transmittance (%)
UiO-66
1046
UiO-66-Mo-5
800
900
1000
1100
1200
-1
Wavenumber (cm )
Figure S2 FTIR spectra of UiO–66 and UiO–66–Mo–5.
S4
A
1 μm
a
B
8 Layers 5nm
D=0.62 nm
Figure S3 (A) SEM and (B) TEM images of bulk MoS2.
S5
A
Average=135±7 nm
Frequency (%)
20 15 10 5 0 110
120
130
140
150
160
Size distribution (nm)
1 μm 20
Frequency (%)
B
Average=33±10 nm
15 10 5 0 20
25
30
35
40
45
50
Size distribution (nm)
1 μm Figure S4 SEM images and EDS of (A) UiO–66–NH2 and (B) UiO–66–NH2–Mo–5.
S6
Table S1 Elemental composition in the as–prepared samples from elemental and ICP analyses Mass percentage (wt. %) Samples
Elemental analyses
ICP analyses
Mo/Zr (atom ratio)
S/Mo (atom ratio)
C
N
H
S
Zr
Mo
UiO–66–NH2
29.8
4.0
4.1
–
17.4
–
–
–
UiO–66–NH2–Mo–1
28.9
3.2
3.8
4.3
16.3
2.8
0.16
4.61
UiO–66–NH2–Mo–3
24.6
2.9
3.4
7.8
12.4
4.7
0.36
4.98
UiO–66–NH2–Mo–5
24.3
3.0
3.1
10.1
11.5
5.9
0.49
5.13
UiO–66–NH2–Mo–6
23.4
3.3
3.1
11.7
10.2
6.7
0.63
5.24
S7
A
C-C & C-H (sp2) 284.6
B
C1s
Zr3d 182.8 185.2
Intensity (a.u.)
Intensity (a.u.)
C-N 286.2 C=O 288.6
b
b
a
a 295
290
285
195
280
190
180
175
Binding Energy (eV)
Binding Energy (eV)
O1s
C
185
N1s
D
531.6
Intensity (a.u.)
Intensity (a.u.)
Mo2p3/2
b
a
c
a
540
535
530
525
405
Binding Energy (eV)
400
395
Binding Energy (eV)
Figure S5 XPS spectra for (A) C1s, (B) Zr3d, (C) O1s, (D) N1s–Mo2p for (a) UiO–66–NH2, (b) (NH4)2MoS4 and (c) UiO–66–NH2–Mo–5.
S8
0 -1
Currrent/ mA cm
-2
-2 -3 -4 -5 -6 -7 -8 -9 -10 -0.3
-0.2
-0.1
0.0
Potential /V vs.RHE
Figure S6 Polarization curve of bulk MoS2.
S9
0.1
Table S2 Comparison of HER performance in acid media for UiO–66–NH2–Mo–5 with other HER electrocatalysts.
Catalyst
Electrolyte
Catalyst loading (mg/cm2)
Overpotential at 10 mA/cm2 (mV)
Tafel (mV·dec–1.)
Ref.
Co9S8@MoS2/CNFs
0.5 M H2SO4
0.212
190
110
1
Co0.6Mo1.4N2
0.1 M HClO4
0.243
190
/
2
Amorphous MoSx
0.5 M H2SO4
/
200
57
3
MoS3/CNT
1.0 M H2SO4
1.6
210
40
4
Defect–rich MoS2
0.5 M H2SO4
0.285
190
50
5
MoS2/3D-NPC
0.5 M H2SO4
0.285
210
51
6
MoS2/PANI
0.5 M H2SO4
0.350
172
45
7
Cu–MoS2/rGO
0.5 M H2SO4
0.285
190
90
8
MoS2–MoN/N–C
0.5 M H2SO4
0.262
123
52
9
Cu2MoS4
0.5 M H2SO4
0.0425
319
95
10
Ni–MoS2
0.5 M H2SO4
0.285
250
76
11
Se–MoS2
0.5 M H2SO4
0.285
282
55
12
NiMoNx/C
0.1 M HClO4
0.250
>200
35.9
13
Porous MoCx
0.5 M H2SO4
0.800
142
53
14
Mo2C@NCNTs
0.5 M H2SO4
3000
147
71
15
Co−NRCNTs
0.5 M H2SO4
280
260
60
16
Co@NC/NG
0.5 M H2SO4
285
180
79.3
17
N–Co@G
0.5 M H2SO4
285
265
98
18
Co@N−C
1 M HClO4
−
200
100
19
0.028
238
111
20
Ni-S/NU−1000
0.1 M HCl
POM−based MOF
0.5 M H2SO4
−
237
96
21
(GO 8 wt.%) Cu−MOF
0.5 M H2SO4
0.226
159
84
22
UiO–66–NH2–Mo–5
0.5 M H2SO4
0.285
200
59
This work
S10
UiO-66
2
Current density(mA/cm )
0 -10 -20 -30
UiO-66-Mo-5
-40 UiO-66-NH2-Mo-5
-50 -0.4
-0.3
-0.2
Pt/C
-0.1
0.0
0.1
Potential (V vs. RHE) Figure S7 Polarization curves of UiO–66, UiO–66–NH2–Mo–5 and UiO–66–Mo–5 in 0.5 M H2SO4.
S11
5000
4000 bulk MoS2
-Z'' ()
3000
2000
1000
0 0
2000
4000
6000
Z' ()
Figure S8 EIS nyquist plots of bulk MoS2.
S12
8000
5 nm Figure S9 HRTEM image of the UiO–66–NH2–Mo–5 after the stability test.
S13
Potential (V vs. RHE)
0.30 0.25 0.20
UiO-66-NH2-Mo-1 UiO-66-NH2-Mo-6
0.15 UiO-66-NH2-Mo-5 0.10
UiO-66-NH2-Mo-3
0.05 Pt/C 0.00 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 2
Exchange current density (A/cm )
Figure S10 Exchange current densities of UiO–66–NH2–Mo–x by applying extrapolation method of Tafel plots.
S14
0.9
0.9
a
b
Scan rate
Scan rate
Current density(mA/cm )
0.6 -2
-2
Current density (mA/cm )
0.6 0.3 0.0 -0.3 -0.6
0.3 0.0 -0.3 -0.6 -0.9
-0.9 0.10
0.12
0.14
0.16
0.18
0.10
0.20
0.12
0.14
0.16
0.18
Potential (V vs. RHE)
Potential (V vs. RHE)
0.9
c
Scan rate
-2
Current density (mA/cm )
0.6 0.3 0.0 -0.3 -0.6 -0.9 0.10
0.12
0.14
0.16
0.18
0.20
Potential (V vs. RHE)
Figure S11 Cyclic voltammograms (0.1‒0.2 V) recorded in 0.5 M H2SO4 for (a) UiO–66–NH2‒Mo‒1, (b) UiO–66–NH2‒Mo‒3 and (c) UiO–66–NH2‒Mo‒6.
S15
0.20
0.000002
Current (A)
0.000001
0.000000
GCE
-0.000001
-0.000002 -0.2 -0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Potential (V vs. RHE)
Figure S12 Cyclic voltammograms of bare GCE recorded at pH =7 phosphate buffer with a scan rate of 50 mV s−1.
S16
Reference [1] Zhu. H.; Zhang, J. F.; Yanzhang, R. P.; Du, M. L.; Wang, Q. F.; Gao, G. H.; Wu, J. D.; Wu, G. M.; Zhang, M.; Liu, B. et al. When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core–Shell System toward Synergetic Electrocatalytic Water Splitting. Adv. Mater. 2015, 27, 4752–4759 [2] Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed Close–Packed Cobalt Molybdenum Nitrides as Non–Noble Metal Electrocatalysts for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192 [3] Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catal. 2012, 2, 1916−1923 [4] Lin, T. W.; Liu, C. J.; Lin, J. Y. Facile Synthesis of MoS3/Carbon Nanotube Nanocomposite with High Catalytic Activity toward Hydrogen Evolution Reaction. Appl. Catal. B: Environ. 2013, 134–135, 75–82 [5] Xie, J. F.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y. Defect–Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Adv. Mater. 2013, 25, 5807–5813 [6] Liu, Y.; Zhou, X. L.; Ding, T.; Wang, C. D.; Yang, Q. 3D Architecture Constructed via the Confined Growth of MoS2 Nanosheets in Nanoporous Carbon Derived from Metal–Organic Frameworks for Efficient Hydrogen Production. Nanoscale 2015, 7, 18004–18009 [7] Zhang, N.; Ma, W. G.; Wu, T. S.; Wang, H. Y.; Han, D. X.; Liu, N. Edge-Rich MoS2 Naonosheets Rooting into Polyaniline Nanofibers as Effective Catalyst for Electrochemical Hydrogen Evolution. Electrochim. Acta 2015, 180, 155–163 [8] Li, F.; Zhang, L.; Li, J.; Lin, X. Q.; Li, X. Z.; Fang, Y. Y.; Huang, J. W.; Li, W. Z.; Tian, M.; Jin, J. et al. Synthesis of Cu-MoS2/rGO Hybrid as Non-Noble Metal Electrocatalysts for The Hydrogen Evolution Reaction. J. Power Sources 2015, 292, 15–22 [9] Dai, X. P.; Du, K. L.; Li, Z. Z.; Sun, H.; Yang, Y.; Zhang, X.; Li, X. S.; Wang, H. Highly Efficient Hydrogen Evolution Catalysis by MoS2–MoN/Carbonitride Composites Derived from Tetrathiomolybdate/Polymer Hybrids. Chem. Eng. Sci. 2015, 134, 572–580 [10] Tran, P. D.; Nguyen, M.; Pramana, S. S.; Bhattacharjee, A.; Chiam, S. Y.; Fize, J.; Field, M. J.; Artero, V.; Wong, L. H.; Loo, J. et al. Copper molybdenum sulfide: A New Efficient Electrocatalyst for Hydrogen Production from Water. Energy Environ. Sci. 2012, 5, 8912–8916 S17
[11] Lv, X. J.; She, G. W.; Zhou, S. X.; Li, Y. M. Highly Efficient Electrocatalytic Hydrogen Production by Nickel Promoted Molybdenum Sulfide Microspheres Catalysts. RSC Adv. 2013, 3, 21231–21236 [12] Ren, X. P.; Ma, Q.; Fan, H. B.; Pang, L. Q.; Zhang, Y. X.; Yao, Y.; Ren, X. D.; Liu, S. Z. A Se-Doped MoS2 Nanosheet for Improved Hydrogen Evolution Reaction. Chem. Commun. 2015, 51, 15997-16000. [13] Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogen–Evolution Catalysts Based on Non–Noble Metal Nickel–Molybdenum Nitride Nanosheets. Angew. Chem. Int. Ed. 2012, 51, 6131–6135 [14] Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2015, 54, 2100–2104 [15] Zhang, K.; Zhao, Y.; Fu, D. Y.; Chen, Y. J. Molybdenum Carbide Nanocrystal Embedded N-Doped Carbon Nanotubes as Electrocatalysts for Hydrogen Generation. J. Mater. Chem. A 2015, 3, 5783–5788 [16] Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt–Embedded Nitrogen–Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at all pH Values. Angew. Chem. Int. Ed. 2014, 53, 4372–4376 [17] Zhou, W. J.; Zhou, J.; Zhou, Y. C.; Lu, J.; Zhou, K.; Yang, L. J.; Tang, Z. H.; Li, LG, Chen SW. N–doped Carbon–Wrapped Cobalt Nanoparticles on N–Doped Graphene Nanosheets for High–Efficiency Hydrogen Production. Chem. Mater. 2015, 27, 2026–2032 [18] Fei, H. L.; Yang, Y.; Peng, Z. W.; Ruan, G. D.; Zhong, Q. F.; Li, L.; Samuel, E. L. G.; Tour, J. M. Cobalt Nanoparticles Embedded in Nitrogen–Doped Carbon for the Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2015, 7, 8083−8087 [19] Wang, J.; Gao, D. F.; Wang, G. X.; Miao, S.; Wu, H. H.; Li J. Y.; Bao, X. H. Cobalt Nanoparticles Encapsulated in Nitrogen–Doped Carbon as a Bifunctional Catalyst for Water Electrolysis. J. Mater. Chem. A 2014, 2, 20067–20074 [20] Hod, I.; Deria, P.; Bury, W.; Mondloch, J. E.; Kung, C. W.; So, M.; Sampson, M. D.; Peters, A. W.; Kubiak, C. P.; Farha, OK.; Hupp, J. T. A Porous Proton−Relaying Metal−Organic Framework Material that Accelerates Electrochemical Hydrogen Evolution. Nat. Commun. 2015, 6, 8304 [21] Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L. P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; S18
Zhou, H. C. Ultrastable Polymolybdate−Based Metal−Organic Frameworks as Highly Active Electrocatalysts for Hydrogen Generation from Water. J. Am. Chem. Soc. 2015, 137, 7169−7177 [22] Jahan, M.; Liu, Z. L.; Loh, K. P. A Graphene Oxide and Copper−Centered Metal Organic Framework Composite as a Tri−Functional Catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372
S19