Supporting Information Porous Nickel Hydroxide-Manganese Dioxide ...

Report 12 Downloads 86 Views
Supporting Information Porous Nickel Hydroxide-Manganese Dioxide-Reduced Graphene Oxide Ternary Hybrid Spheres as Excellent Supercapacitor Electrode Materials Hao Chenab, Shuxue Zhou,a and Limin Wua* a

Department of Materials Science and Advanced Materials Laboratory, Fudan University,

Shanghai 20043, PR China; bSchool of Engineering, and National Engineering and Technology Research Center of Wood-based Resources Comprehensive Utilization, Zhejiang Agriculture and Forestry Unversity, Hangzhou Lin’an 311300, PR China E-mail: [email protected]

1

Figure S1. EDX spectra of (a) entire area, (b) center area, and (c) edge region of hybrid sphere supported on Cu grid with a lacey film. (d) Full XPS spectra of Ni(OH)2-MnO2-RGO (A in

2

brackets denotes Auger electron peaks). (e) Full XPS and (g) C1s XPS spectra of GO and RGO. (f) Raman spectra of GO and RGO. (h) Photographs of as-obtained Ni(OH)2-MnO2 (left) and Ni(OH)2-MnO2-RGO hybrid spheres (right) powders.

3

Table S1. Comparison of maximum Cs of the reported nickel-manganese oxide/hydroxide-, manganese

dioxide-graphene-,

nickel

oxide/hydroxide-graphene-,

and

nickel-cobalt

oxide/hydroxide-graphene-based composite pseudocapacitive materials and the present work. Cs (F g–1)

Ref.

Binary Manganese-Nickel Oxides

160 (50 mV s–1)

1

Porous nickel manganite materials

180 (0.25 A g–1)

2

Nanosized Ni-Mn Oxides

195 (10 mV s–1)

3

Mn/Ni mixed oxides

210 (0.12 A g–1)

4

Nickel-manganese oxide

284 (5 mV s–1)

5

Ni(OH)2-MnO2 core-shell nanostructures

355 (0.5 A g–1)

6

Mesoporous Mn-Ni oxides

411 (2 mV s–1)

7

Nanostructured NiO-MnO2 composite

453 (10 mV s–1)

8

Ultra-fine Mn-Ni-Cu oxides

490 (2 mV s–1)

9

NiO-MnO2 core-shell nanocomposites

528 (1 mV s–1)

10

Microporous nickel-manganese oxide

685 (2 mA cm–2)

11

Nanostructured Mn-Ni-Co oxides

1260 (1 A g–1)

12

Ni(OH)2-MnO2 hybrid nanosheets

2628 (3 A g–1)

13*

Graphene-MnO2 nanowall

122 (10 mV s–1)

14

Graphene-MnO2-carbon nanotubes

193 (0.2 A g–1)

15

Graphene-honeycomb-like MnO2

210 (0.5 A g–1)

16

Hydrothermally reduced graphene-MnO2

212 (2 mV s–1)

17

Graphene Oxide-MnO2 nanowires

216 (0.15 A g–1)

18

Graphene nanosheets-MnO2

235 (20 mV s–1)

19

Flexible graphene-MnO2 composite papers

256 (0.5 A g–1)

20

Electrodes based on materials 1. Nickel-manganese oxide/hydroxide composites

2. Manganese dioxide-graphene composites

4

Graphene-needle-like MnO2

260 (0.2 A g–1)

21

Graphene sheet-MnO2 sheet mutilayers

263 (0.283 A g–1)

22

Graphene nanoplate-MnO2

309 (5 mV s–1)

23

Nanostructured graphene-MnO2

310 (2 mV s–1)

24

Graphene-MnO2 nanostructured textiles

315 (2 mV s–1)

25

Graphene-flower-like MnO2

328 (0.5 mA/cm2)

26

Graphene-MnO2 nanoparticles

365 (5 mV s–1)

27

Graphene-MnO2 film

400 (10 mV s–1)

28

Reduced graphene oxide-MnO2 hollow sphere

578 (0.5 A g–1)

29*

Graphene sheet-porous NiO hybrid film

400 (2 A g–1)

30

Graphene porous NiO nanocomposite

430 (0.2 A g–1)

31

Monolayer graphene-NiO nanosheets

525 (0.2 A g–1)

32

NiO-attached graphene oxide nanosheets

569 (5 A g–1)

33

Reduced graphene oxide-nickel oxide composite

770 (2 mV s–1)

34

Ni(OH)2-graphene hybrid material

855 (5 mV s–1)

35

Graphene oxide-nickel oxide

890 (5 mV s–1)

36

Graphene-nickel hydroxide nanosheet hybrid

1163 (5 mV s–1)

37

Reduced graphene oxide-α-Ni(OH)2 hybrid composites

1215 (5 mV s–1)

38

Ni(OH)2 nanoplates grown on graphene

1335 (2.8 A g–1)

39

Ni(OH)2-graphene

1735 (1 mV s–1)

40

Spherical α-Ni(OH)2 grown on graphene

1761 (5 mV s–1)

41

Nanocomposites of Ni(OH)2-reduced graphene oxides

1804 (1 A g–1)

42

Ni(OH)2 nanoflakes on reduced graphene oxide

1828 (1 A g–1)

43

3. Nickel oxide/hydroxide-graphene composites

4. Nickel-cobalt binary oxide/hydroxide-graphene composites Cobalt-nickel oxides-carbon nanotube composites

569 (10 mA cm–2)

44

Graphene-nickel cobaltite nanocomposite

618 (5 mV s–1)

45

5

Co0.45Ni0.55O nanorods on reduced graphene oxide sheets

823 (1 A g–1)

46

NiCo2O4-reduced graphene oxide composites

835 (1 A g–1)

47

Nickel cobalt oxide-reduced graphite oxide composite

1222 (0.5 A g–1)

48

Ni(OH)2-CoO-reduced graphene oxide composites

1317 (2 A g–1)

49

Ni(OH)2-MnO2-RGO hybrid spheres

1985 (2 A g–1)

This work

* our previously reported work.

Table S2. Comparison of maximum densities and corresponding average power densities of some reported nickel-manganese oxide/hydroxide-, manganese dioxide-graphene-, nickel oxide/hydroxide-graphene-, and nickel-cobalt oxide/hydroxide-graphene-based composite pseudocapacitive materials and the present work Energy density

Power density

(Wh⋅⋅kg−1)

(kW⋅⋅kg−1)

Ni(OH)2/MnO2 core/shell nanostructures

41.2

0.50

6

Mn/Ni mixed oxides

3.12

1.00

4

Graphene-MnO2 nanoparticles

50.2

0.22

27

Graphene-flower-like MnO2

11.4

25.8 (Pmax)

26

Graphene-MnO2 nanostructured textiles

12.5

110 (Pmax)

25

Graphene nanosheets-MnO2

33.1

20.4 (Pmax)

19

Graphene-Ni(OH)2 nanoplates

37.0

10.0

39

Graphene Sheet/Porous NiO Hybrid Film

16.8

-

30

Ni(OH)2-MnO2-RGO hybrid spheres

54.0

0.39

This work

Electrodes based on materials

Ref.

Pmax: maximum power density.

6

Table S3. Comparison of the maximum energy densities, corresponding average power densities and voltage range of some reported nickel or manganese oxide/hydroxide based asymmetric supercapacitors, and the present work Energy density (Wh⋅⋅kg−1)

Power density (kW⋅⋅kg−1)

Voltage range (V)

Ref.

Graphitic hollow carbon spheres-MnO2 nanofibers//graphitic hollow carbon spheres

22.1

0.10

0-2

50

Graphite oxide-MnO2//graphite oxide

24.3

24.5 (Pmax)

0-2

51

Ni(OH)2//AC

25.0

-

0.6-1.3

52

MnO2//graphene

25.2

0.10

0-2

53

K0.27MnO2·0.6H2O//AC

25.3

0.14

0-1.8

54

MnO2 nanowire-SWCNT//In2O3 nanowireSWCNT

25.5

50.3 (Pmax)

0-2

55

RGO-MnO2-CNTs//AC-WCNT

27.0

0.13

0-2

56

Ni(OH)2//graphene

30.0

1.00

0-1.6

57

Poly(3,4-ethylenedioxythiophene)-MnO2//AC

30.2

0.18

0-1.8

58

Ni(OH)2-MnO2-RGO hybrid spheres// FRGO

32.6

0.31

0-1.6

This work

Positive materials//negative materials

AC: activated carbon, CNT: carbon nanotube, Pmax: maximum power density.

7

References for supporting information: (1) Chen, Y. S.; Hu, C. C. Capacitive Characteristics of Binary Manganese-Nickel Oxides Prepared by Anodic Deposition. Electrochem. Solid St 2003, 6, A210-A213. (2) Pang, H.; Deng, J.; Wang, S.; Li, S.; Du, J.; Chen, J.; Zhang, J. Facile Synthesis of Porous Nickel Manganite Materials and Their Morphology Effect on Electrochemical Properties. RSC Adv. 2012, 2, 5930-5934. (3) Zhou, J.; Shen, X.; Jing, M. Nanosized Ni-Mn Oxides Prepared by the Citrate Gel Process and Performances for Electrochemical Capacitors. J. Mater. Sci. Technol. 2006, 22, 803806. (4) Kim, H.; Popov, B. N. Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors. J. Electrochem. Soc. 2003, 150, D56-D62. (5) Wu, C.-H.; Ma, J.-S.; Lu, C.-H. Synthesis and Characterization of Nickel-Manganese Oxide via the Hydrothermal Route for Electrochemical Capacitors. Curr. Appl. Phys. 2012, 12, 1190-1194. (6) Jiang, H.; Li, C.; Sun, T.; Ma, J. High-Performance Supercapacitor Material Based on Ni(OH)2 Nanowire-MnO2 Nanoflakes Core-Shell Nanostructures. Chem. Commun. 2012, 48, 2606-2608. (7) Fang, D.-L.; Wu, B.-C.; Yan, Y.; Mao, A.-Q.; Zheng, C.-H. Synthesis and Characterization of Mesoporous Mn-Ni Oxides for Supercapacitors. J. Solid State Electr 2012, 16, 135-142. (8) Liu, E.-H.; Li, W.; Li, J.; Meng, X.-Y.; Ding, R.; Tan, S.-T. Preparation and Characterization of Nanostructured NiO/MnO2 Composite Electrode for Electrochemical Supercapacitors. Mater. Res. Bull. 2009, 44, 1122-1126.

8

(9) Fang, D.-L.; Chen, Z.-D.; Wu, B.-C.; Yan, Y.; Zheng, C.-H. Preparation and Electrochemical Properties of Ultra-Fine Mn-Ni-Cu Oxides for Supercapacitors. Mater. Chem. Phys. 2011, 128, 311-316. (10) Zhang, B.; Li, W.; Sun, J.; He, G.; Zou, R.; Hu, J.; Chen, Z. NiO/MnO2 Core/Shell Nanocomposites for High-Performance Pseudocapacitors. Mater. Lett. 2014, 114, 40-43. (11) Prasad, K. R.; Miura, N. Electrochemically Synthesized MnO2-Based Mixed Oxides for High Performance Redox Supercapacitors. Electrochem. Commun. 2004, 6, 1004-1008. (12) Luo, J.-M.; Gao, B.; Zhang, X.-G. High Capacitive Performance of Nanostructured Mn-NiCo Oxide Composites for Supercapacitor. Mater. Res. Bull. 2008, 43, 1119-1125. (13) Chen, H.; Hu, L.; Yan, Y.; Che, R.; Chen, M.; Wu, L. One-Step Fabrication of Ultrathin Porous Nickel Hydroxide-Manganese Dioxide Hybrid Nanosheets for Supercapacitor Electrodes with Excellent Capacitive Performance. Adv. Energy Mater. 2013, 3, 1636-1646. (14) Zhu, C.; Guo, S.; Fang, Y.; Han, L.; Wang, E.; Dong, S. One-Step Electrochemical Approach to the Synthesis of Graphene/MnO2 Nanowall Hybrids. Nano Res. 2011, 4, 648657. (15) Lei, Z.; Shi, F.; Lu, L. Incorporation of MnO2-Coated Carbon Nanotubes between Graphene Sheets as Supercapacitor Electrode. ACS Appl. Mater. Interfaces 2012, 4, 1058-1064. (16) Zhu, J.; He, J. Facile Synthesis of Graphene-Wrapped Honeycomb MnO2 Nanospheres and Their Application in Supercapacitors. ACS Appl. Mater. Interfaces 2012, 4, 1770-1776. (17) Guan, C.; Liu, J.; Cheng, C.; Li, H.; Li, X.; Zhou, W.; Zhang, H.; Fan, H. J. Hybrid Structure of Cobalt Monoxide Nanowire @ Nickel Hydroxidenitrate Nanoflake Aligned on Nickel Foam for High-Rate Supercapacitor. Energy Environ. Sci. 2011, 4, 4496-4499.

9

(18) Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. ACS Nano 2010, 4, 2822-2830. (19) Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. High Performance Supercapacitors Using Metal Oxide Anchored Graphene Nanosheet Electrodes. J. Mater. Chem. 2011, 21, 1619716204. (20) Li, Z.; Mi, Y.; Liu, X.; Liu, S.; Yang, S.; Wang, J. Flexible Graphene/MnO2 Composite Papers for Supercapacitor Electrodes. J. Mater. Chem. 2011, 21, 14706-14711. (21) Mao, L.; Zhang, K.; Chan, H. S. O.; Wu, J. Nanostructured MnO2/Graphene Composites for Supercapacitor Electrodes: the Effect of Morphology, Crystallinity and Composition. J. Mater. Chem. 2012, 22, 1845-1851. (22) Li, Z.; Wang, J.; Liu, X.; Liu, S.; Ou, J.; Yang, S. Electrostatic Layer-by-Layer SelfAssembly Multilayer Films Based On Graphene and Manganese Dioxide Sheets as Novel Electrode Materials for Supercapacitors. J. Mater. Chem. 2011, 21, 3397-3403. (23) Huang, H.; Wang, X. Graphene Nanoplate-MnO2 Composites for Supercapacitors: a Controllable Oxidation Approach. Nanoscale 2011, 3, 3185-3191. (24) Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Fast and Reversible Surface Redox Reaction of Graphene-MnO2 Composites as Supercapacitor Electrodes. Carbon 2010, 48, 3825-3833. (25) Yu, G.; Hu, L.; Vosgueritchian, M.; Wang, H.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Lett. 2011, 11, 2905-2911. (26) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C. Graphene and Nanostructured MnO2 Composite Electrodes for Supercapacitors. Carbon 2011, 49, 2917-2925.

10

(27) Chen, C.-Y.; Fan, C.-Y.; Lee, M.-T.; Chang, J.-K. Tightly Connected MnO2-Graphene with Tunable Energy Density and Power Density for Supercapacitor Applications. J. Mater. Chem. 2012, 22, 7697-7700. (28) Lee, H.; Kang, J.; Cho, M. S.; Choi, J.-B.; Lee, Y. MnO2/Graphene Composite Electrodes for Supercapacitors: the Effect of Graphene Intercalation on Capacitance. J. Mater. Chem. 2011, 21, 18215-18219. (29) Chen, H.; Zhou, S.; Chen, M.; Wu, L. Reduced Graphene Oxide-MnO2 Hollow Sphere Hybrid Nanostructures as High-Performance Electrochemical Capacitors. J. Mater. Chem. 2012, 22, 25207-25216. (30) Xia, X.; Tu, J.; Mai, Y.; Chen, R.; Wang, X.; Gu, C.; Zhao, X. Graphene Sheet/Porous NiO Hybrid Film for Supercapacitor Applications. Chem. -Eur. J. 2011, 17, 10898-10905. (31) Jiang, Y.; Chen, D.; Song, J.; Jiao, Z.; Ma, Q.; Zhang, H.; Cheng, L.; Zhao, B.; Chu, Y. A Facile Hydrothermal Synthesis of Graphene Porous NiO Nanocomposite and its Application in Electrochemical Capacitors. Electrochim. Acta 2013, 91, 173-178. (32) Zhao, B.; Song, J.; Liu, P.; Xu, W.; Fang, T.; Jiao, Z.; Zhang, H.; Jiang, Y. Monolayer Graphene/NiO Nanosheets with Two-Dimension Structure for Supercapacitors. J. Mater. Chem. 2011, 21, 18792-18798. (33) Wu, M.-S.; Lin, Y.-P.; Lin, C.-H.; Lee, J.-T. Formation of Nano-Scaled Crevices and Spacers in NiO-Attached Graphene Oxide Nanosheets for Supercapacitors. J. Mater. Chem. 2012, 22, 2442-2448. (34) Zhu, X.; Dai, H.; Hu, J.; Ding, L.; Jiang, L. Reduced Graphene Oxide-Nickel Oxide Composite as High Performance Electrode Materials for Supercapacitors. J. Power Sources 2012, 203, 243-249.

11

(35) Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H.; Dai, H. Advanced Asymmetrical Supercapacitors Based on Graphene Hybrid Materials. Nano Res. 2011, 4, 729-736. (36) Yuan, B.; Xu, C.; Deng, D.; Xing, Y.; Liu, L.; Pang, H.; Zhang, D. Graphene Oxide/Nickel Oxide Modified Glassy Carbon Electrode for Supercapacitor and Nonenzymatic Glucose Sensor. Electrochim. Acta 2013, 88, 708-712. (37) Zhu, J.; Chen, S.; Zhou, H.; Wang, X. Fabrication of a Low Defect Density GrapheneNickel Hydroxide Nanosheet Hybrid with Enhanced Electrochemical Performance. Nano Res. 2012, 5, 11-19. (38) Lee, J. W.; Ahn, T.; Soundararajan, D.; Ko, J. M.; Kim, J.-D. Non-Aqueous Approach to the Preparation of Reduced Graphene Oxide/α-Ni(OH)2 Hybrid Composites and Their High Capacitance Behavior. Chem. Commun. 2011, 47, 6305-6307. (39) Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132, 7472-7477. (40) Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F. Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Adv. Funct. Mater. 2012, 22, 2632-2641. (41) Yang, S.; Wu, X.; Chen, C.; Dong, H.; Hu, W.; Wang, X. Spherical α-Ni(OH)2 Nanoarchitecture Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Chem. Commun. 2012, 48, 2773-2775.

12

(42) Xiao, J.; Yang, S. Nanocomposites of Ni(OH)2/Reduced Graphene Oxides with Controllable

Composition,

Size,

and

Morphology:

Performance

Variations

as

Pseudocapacitor Electrodes. ChemPlusChem 2012, 77, 807-816. (43) Chang, J.; Xu, H.; Sun, J.; Gao, L. High Pseudocapacitance Material Prepared via in Situ Growth of Ni(OH)2 Nanoflakes on Reduced Graphene Oxide. J. Mater. Chem. 2012, 22, 11146-11150. (44) Fan, Z.; Chen, J.; Cui, K.; Sun, F.; Xu, Y.; Kuang, Y. Preparation and Capacitive Properties of Cobalt-Nickel Oxides/Carbon Nanotube Composites. Electrochim. Acta 2007, 52, 29592965. (45) Wang, H.; Holt, C. B.; Li, Z.; Tan, X.; Amirkhiz, B.; Xu, Z.; Olsen, B.; Stephenson, T.; Mitlin, D. Graphene-Nickel Cobaltite Nanocomposite Asymmetrical Supercapacitor with Commercial Level Mass Loading. Nano Res. 2012, 5, 605-617. (46) Xiao, J.; Yang, S. Bio-Inspired Synthesis of NaCl-type CoxNi1-xO (0